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The method is shown graphically in Fig. 2.1.
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Figure 2.1 Graphical representation of the bisection method.

It should be noted that this method alwavs succeeds. If there are more roots
than one in the interval, bisection method finds one of the roots. It can be sasily
programmed using the following computational steps:
1. Choose two real numbers o and & such that f{ad FUEY < O
2. Bet x, = (a + HWI
3. day If o)y Mxy = 0, the root lies in the interval (@, x,). Then, set
r=x, and go to step 2 abowve.
(by If f{a)y fMAx,) = O, the root lies in the interval (x_ &) Then, set
a = x, and go to step 2.
(cy If M) Mx,) = 0, it means that x, is a root of the eguation
Jx)y = 0 and the computation may be terminated.
In practical problems, the roots may not be exact so that condition {(c)

abowve is never satisfied. In such a case, we nesd to adopt a criterion for
deciding when to terminate the cormipultations.

A convenient criterion is to compute the percentage error & defined by

X X

£

= 100G, (2.5)

e

where al is the new wvalue of x,.. The computations can be terminated when o,

becomes less than a prescribed tolerance, say . In additton, the maximum
number of iterations may also be specified in advance.
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Example 2.2 Find a real root of the equation X -2x-5=0.

Let f(x) = x* — 2x — 5. Then
f(2) =-1 and f£(3) = 16.

Hence a root lies between 2 and 3 and we take

X _2+3_,.
2
Since f(xy) = f(2.5) = 5.6250, the root lies between 2 and 2.25.
Hence

_2+25_ , ¢

X2

Now, fi(x2) = 1.890625, the root lies between 2 and 2.25.
Therefore,

_2+225 _, 55

A3

Since f(x3) = 0.3457, the root lies between 2 and 2.125.
Therefore,

_2+42.125 , neos

X4

Proceeding in this way, we obtain the successive approximations:

xs = 2.09375, xg = 2.10938, x; = 2.10156,

xg = 2.09766, x, = 2.09570,  x,, = 2.09473,

xg— 2.0’9’424, saa
We find

X — X & —'D.'D‘DDS,
and
X1 Mol g = 20005 60— 0.02%
X 2.09424

Hence a root, correct to three decimal places, is 2.094.




2.3 METHOD OF FALSE POSITION

This is the oldest method for finding the real root of a nonlinear equation
Fixy = 0 and closely resembles the bisection method. In this method, also
known as regula—falsi or the method of chords, we choose Two points o and
& such that {a) and S are of opposite signs. Hence, a root must lie in
between these points. Mow, the equation of the chord joining the two points
[er. Flcad] and [& S5 is given by

¥y—fla) _ rip)— ria)
xX—a bh—a .

(2.6)

The method consists in replacing the part of the curve between the points
[c, F i) and [&, S5 by means of the oford joining these points, and taking
the point of intersection of the chord with the x-axis as an approci el fon o
the root. The point of intersection in the present case is obtained by putting
w=0 in Egq. {(2.6). Thus, we obtain
Aﬁ=3—i[b—a}=aﬂb} brila) (2.7)

rig) — fa) ri) — fla)

which is the firsi approximaiion to the root of (x)y = 0. If now (x;) and
Fia) are of opposite signs, then the root lies betwesen o and x;, and we
replace & bwv x; in Eq. (2.7 and obtain the mex approximation. Otherwise, we
replace a by x; and generate the next approximation. The procedure s repeated
till the root is obtained to the desired accuracy. Figure 2.2 giwves
a graphical representation of the method. The error criterion Eq. (2.5) can be
used in this case also.
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Figure 2.2 Method of false position.



Example 2.7 Given that the equation x** = 69 has a root between 5 and 8.
Use the method of regula—falsi to determine it.

Let £(x) = x> - 69. We find

f(5) =-34.50675846 and f(8) = 28.00586026.

Hence

 5(28.00586026) -8 (~34.50675846)
28.00586026 +34.50675846

=6.655990062.

g

Now, f(x;) = -4.275625415 and therefore, the root lies between 6.655990062
and 8.0. We obtain

X, = 6.83400179,  x3 = 6.850669653.

The correct root is 6.8523651..., so that xy is correct to three significant
figures.









2.5 NEWTOM-RAPHSOMN METHOD

This method is generally used to improwve the result obtained by one of the

previous methods. Let x5 be an approximate root of f{(x) = 0 and let
xy; = xg + Ff2 be the correct root so that #(x,;) = 0. Expanding #{(x; + /) by
Tavlor’s series., we obtain
P
.f‘(XD] +.ﬁf"(lﬂ} +? f‘”[lﬂ} 4+ - -~ ={}.

Geometrically, the method consists in replacing the part of the curve
between the point [x, f(xg)] and the x-axis by means of the tangent to the
curve at the point, and is described graphically in Fig. 2.3. It can be used for
solving both algebraic and transcendental equations and it can also be used
when the roots are complex.

Y

P(Xg, ¥o)

0 / X, X X

Figure 2.3 Newton—Raphson method.



Newton Raphson problem

Example 2.16 Find a root of the equation xsin x+cos x=0.

We have
f(x)=xsinx +cosx and f'(x)=x cosx.

The iteration formula is, therefore,

X, sin x,, +cos x,

Xl = &g —
X, COS X,

With x, = m, the successive iterates are given below

n Xn f(xp) Xnse

0 3.1416 -1.0 2.8233
1 2.8233 -0.0662 2.71986
2 2.7986 —0.0006 2.71984
3 2.7984 0.0 2.71984




3.3.1 Forward Differences

If vg. Vi- V2. -... Vv, denote a set of wvalues of y». then yv; — Yo V2 — V9. ----
V4 — Vo are called the differernnces of y. Denoting these differences by
MAVog. MNV9. ... ANy, 1 respectively. we hawve

Ave = Vi1 — Vo- AV = Va2 — Vis o ---s AVp 1 = VM — Ve
where A is called the forward differernnce operator and Avg. Avy. ... are

called first forward Jdifferernnces. The differences of the first forward differences
are called secornd forward differences and are denoted by AZyvg. AZyv.
Similarly. one can define third forward differernnces. fowrth forward differerices.

Table 3.1 Forward Difference Table

x Yo A A* A? At A° AP
X Yo
Ayo
X ¥ AVa \
Ayq Ao
X2 ¥z A%y Alya
Ays A’y Ay
X3 ¥3 Ays Ay Ayq
Ays Aty Ay
Xy 2 A'ys Ay,
Aya A'ys
X, Vs Ayy
Ays
Xg ¥s

In practical computations, the forward difference table can be formed in the
following way. For the data points (x, v,). i = 0. 1, 2. .... n and x; =
xp + ih. we have

Ay, = Vi1 — Ve =0, 1, ..., n— 1.



3.3.2 Backward Differences

The differences vy — ¥Vg. V2 — WVia --vca ¥Vu — Ve are called first backward
differernnces if thev are denoted by Vi, Vs, ..., Vv, respectively, so that

Vv, = v — Vo. Vs = vo — vy,
vyn :yn_yn—l-:

where V is called the backward difference operator. In a similar wav, one
can define backward differences of higher orders.

Table 3.3 Backward Difference Table

X y v V2 V3 v4 Vo ve
XD Yo

X1 Y1 Vyq

X2 ¥2 Vyo Vs

X3 3. Wa Vi, Vi,

X4 ya VY4 Vs, Vg Vi

X5 Y5 Vs Vs Vs Vs Vg

X6 Ve W V¥ V¥ V% V% V%




Unit 2

6.4.1 Trapezoidal Rule

Setting n = 1 in the general formula (6.29), all differences higher than
the first will become zero and we obtain

X 1

| 1 h
J. ffiY:ﬁ[}’n +Eﬂfn )=ﬁ[fn +EU’1—J’0)]=E o+ n)  (6.30)

X

For the next interval [x,, x;], we deduce similarly

; h
J de=E[}i+}’z] (6.31)
|



6.4.2 Simpson’'s 1/3-Rule

This rule is obtained by puttingn = 2 in Eg. (6.29), i.e. by replacing the
curve by n/2 arcs of second-degree polynomials or parabolas. We have then

A2

' 1 h
J J’d’f=2f?[}”u + Ay +Eﬂzfu ]=§ Up+4x+ ).

X

Similarly,
Xy h
| yax== 4+ 5)
X2

and finally
Xp ﬁ
J fdng U’}n—E +4J{n—1 +fn}-

An-2

Summing up, we obtain
Xp h
J yax=2lp+4nt ittt rm)
0

+2(p+yat )+t Yoz) T al, (6.39)



6.4.3 Simpson’'s 3/8-Rule

Setting n = 3 in Eq. (6.29), we observe that all the differences higher than
the third will become zero and we obtain

.1'3 If
J Y dx=23h| ¥ +Eﬂyﬂ +E.f_‘-.2yﬂ —|—l£~.3y[,
% L 2 4 8

3 3 1
=3h| w +§{J’1—J’GJ+I(J’2—2ﬂ+fn)+§(f3—3f2 +3J1—an)]

3h
=3 (Vo +35 +3y2 + 33).
Similarly

r 34
I }’df’f’=? (y5 +3yy +3¥5 + ¥5)

X3

and so on. Summing up all these., we obtain
A

3h
J yrﬂ’:F[[}’ﬂ+3}’1+3}’3+}’3}+{}’3+3}’4 +3¥5+ Jp) o

Xp

+ (Vg3 +3¥y 2 +3¥, 0+ Yol

3h
=§{qu+3}’1+3}@ +2)3+3yy +3y5 + 25+

+zfn—3+3fn—2 +3fn—l+fn) (6-41}



7.5.1 Gauss Elimination

This is the elementary elimination method and @ reduces the swvstem of
equations o an egquivalent upper-triangular svsten, which can be solved bw
fronc & sva s 0 eerf o,

Let the syvstem of g linear equations in g unknowns be given by
Ay + A b aygan e Ay, x, =0y
A1) + depAn + Az -t A X, = I (7.27)

AppX] + Az g + duzdy oo F Ay Ny = 0y
There are two steps in the solution of the svstem given in Eq. (7.27TL viz.,
the elimination of unknowns and back substitotion.
Sregpr £ The unknowns are eliminated to obtain an upper-triangular sysiem.
T eliminate x; from the second equation, we multiply the first equation
b}' {—£.I‘3|."£.I'||} and obtain

F=
—dz A — Az %fz - Elzﬁﬂ—---—ajn%:n =—n %

Mdding the abowve eguation to the second eguation of Eq. (7.27 )L we obiain

| | | ey
dpp — djp —— + | apq — ayg —— +eee | A, —ay, — |x, =in — i —,
[ “ 2311 ]XE [ B 33}1]}@ [ Sn}r gy

(7T.28)
which can be written as

Apaln 4+ Agq Ay + e+ A9, X, = B,

where asz = dzs —ayz (azpfag ). etc. Thus the primes indicate that the original
element has changed its value. Similarly, we can multiply the first eguation
by —yfay g and add it o the third eguation of the system (7.27)h This
eliminates the unknown x; from the third equation of Eg. (7.27) and we
orbrizim

A3p Xz + 33 +ee- + a3, ¥, = Dy (7.29)
In a similar fashion, we can eliminate x; from the remaining equations and

after eliminating «; from the last equation of Eg. (7.27) we obtain the
swstem



ap Ay + ap Az +ayz A s Ay g = 5
g Xp + Sgqiy + -+ aG oA, = I

- - " - T30
Aqp Xy + 338y - Sy = i « y

Az Az + dApzdg +o0c + dApgXg = -

We next eliminate x, from the last (7 — 2) equations of Egq. (7.30) Before
this, it is important o notice that in the process of obtaining the abowe
svstemn, we have multiplied the first row bw (—o, a;, L i.e. we have divided
it bw gy which is therefore assumed to be nonzero. For this reason, the first
equation in the system (7.30) is called the pived egecaliorr, and <, s called
the piver or piverald efemenr. The method obwviously fails if ;= 0. We shall
discuss this important point after completing the description of the elimination
method. MNow, to eliminate x, from the third eguation of BEg. (7.30) we
multiply the second equation by (—ajz/a3z) and add it to the third equation.
Repeating this process with the remaining eguations, we obtain the swystem

Ay + ap A aygany s Sy = I

A5 X + Agg Ay + -0+ o g X, = b
e + e S, = Y (F.31%

L

Fga Ay + -+ Sga g = ;.

In Eq. (7.3 1), the “double primes” indicate that the efemerrs foave ofroarrged
mwice . It is easily seen that this procedure can be continued to eliminate x,

from the fourth eguation onwards, @y from the fifth equation onwards, etc.,
till we finally obtain the upper-triangular forme:

ay Ay +apaz +ayzan oA X, =8
A5 Mg + A3y + -0+ g XNy = I
=

aia iy =+ AT Ny = : (7.32)
Al — 6D,
wihere .sr:::_l] indicates that the element @, has changed (7 — 1) times. We

thus have completed the first step of elimination of unk nowns and  redoc tion
o the upper-triangular form.



Step 2 We now have to obtain the required solution from the syste
(132). From the last equation of this system, we oblam

b:(]n |
.l’,fm. (733)
i

Thisi then substituted in he (n~1)th equaion to obtan x_, and the process
5 repeated to compute the other unknowns. We have therefore first computed
T 060 1y, xp,..., 1y, 1, 10 hat order Due to this reason, the process s
called back substitution,



Example 7.4 Use Gauss elimination to solve the system
2x+y+z=10
Jx+2y+3z=18
x+4y+9z=16.

We first eliminate x from the second and third equations. For this we
multiply the first equation by (—3/2) and add to the second to get

y+3z=6. (1)
Similarly, we multiply the first equation by (—1/2) and add it to the third to get
Ty+17z=22. (ii)

We thus have eliminated x from the second and third equations. Next, we
have to eliminate y from (i) and (ii). For this we multiply (i) by —7 and add
to (ii). This gives

—4z=-20 or z=3,



The upper-triangular form is therefore given by
2x+ y+z=10
y+3z=6
z=215.

It follows that the required solution is x=7, y=-—9 and z=5.

The next example demonstrates the necessity of pivoting in the elimination
method.

Example 7.5 Solve the system
0.0003120x, + 0.006032x, = 0.003328
0.5000x; + 0.8942x, = 0.9471
The exact solution is x;y = 1 and x», = 0.5.
We first solve the system with pivoting. We write the given system as
0.5000x; + 0.8942x, = 0.9471
0.000312x; + 0.006032x, = 0.003328
using Gaussian elimination, the above system reduces to
0.5000x; + 0.8942x, = 0.9471
0.005474x- = 0.002737
Back substitution gives: x> = 0.5 and x; = 1.0.
Without pivoting, Gaussion elimination gives the system
0.000312x; + 0.006032x, = 0.003328
—~8.7725x, = =5.3300
The back substitution process gives
x> = 0.6076 and x; = —1.0803



Without pivoting, Gaussion elimination gives the system
0000312y + 0006032, = 0003328

—8.7T725x>» = —5.3300
The back substitution process gives
x2 = 0.6076 and x, = —1.0803

The effect of pivoting is clearly seen.

T7.5.3 Gauss—Jordan Method

This is a modification of the Gauss elimination method. the essential difference
being that when an unknown is eliminated, it is eliminated from all equations.
The method does not require back substitution to obtain the solution and is
best illustrated by the following example.

Example 7.6 Solve the system (ree Example 7.4)
2x+ y+==10
A3x+2p+3==18

x+ 4 pr+9=z=16.
by the Gauss—Jordan method.

Elimination of x from the second and third equations is done as in
‘Gauss elimination” and we obtain the system

2x+ y+z=10
(1/2) y+(3/2) z=3
(7/2) y+ (17/2) 2=11.

Next, the unknown y is eliminated from both the first and third equations. This
cives us

x—z=2 and z=5,
Hence the system becomes:

x—z=2
y+3z=6
z=>5.

Evaluation of y and z is trivial and the result is the same as before.



Unit 3

8.2 SOLUTION BY TAYLOR'S SERIES

We consider the differential equation

Y ="f(xy) (8.1a)
with the initial condition

v (xp) = - (8.1b)

Ify (x) is the exact solution of Eq. (8.1), then the Taylor’s series for y(x)
around x = x; is given by

* (X_ 2 i
,V'[X}:,VD"‘{X_XD]J”D‘FT):M,VD +e- (8.2)
If the values of }). )y, ... are known, then Eq. (8.2) gives a power series

for y. Using the formula for total derivatives, we can write

y'=f= fx+y'fy = f,+ ff,,
where the suffixes denote partial derivatives with respect to the wvariable
concerned. Similarly, we obtain

Vi= =+ L+ F(fu+ £, )+ £,(f,+ £, f)

= fu+2ff,+ f*f, + £ f,+ ff]

£y,
and other higher derivatives of y. The method can easily be extended to
simultaneous and higher-order differential equations.



Example 8.1 From the Taylor series for y (x). find v (0.1) correct to four
decimal places if v (x) satisfies

y’:x_yz and y(0)=1.
The Taylor series for y(x) is given by

(x) =1+ x3 +— X X "'r+‘1'r—5 Y+
g NN 0T g0 Ty e
The derivatives yj, yg,... etc. are obtained thus:
V(0 =x- yo=-1
Vi) =1-2n Yo =3
},fu(_x} _ _2}’};1 . 2};2 H}’a”= —8-
i
W) ==2yy"-6yy" yo =34
Y =-20 -8yy -6y Yo =-186

Using these wvalues., the Taylor series becomes

v(x) =1—X—|—§J(2 —Ef +£.Jv‘c"l —ﬂf + -
2 3 12 20

To obtain the value of y (0.1) correct to four decimal places, it is found that
the terms up to x* should be considered, and we have y(0.1)=0.9138.

Suppose that we wish to find the range of values of x for which the
above series. truncated after the term containing x*, can be used to compute
the values of y correct to four decimal places. We need only to write

%XE <0.00005 or x<0.126.



Example 8.2 Given the differential equation

V'—xy/—y=0
with the conditions »(0) = 1 and »'(0) = 0. use Taylor’s series method to
determine the wvalue of v (0.1).
We have y(x) = 1 and y'(x) = 0 when x = 0. The given differential
equation is

V(%) =x/ (0 + y(») (i)
Hence v (0) = w0) = 1. Successive differentiation of (i) gives
V') =x"(0)+ Y@+ Y (x)=x(0)+2)(x), (i)
W) =270+ ¥ (0 +27(x) = 077 (1) + 3y (). (i)
V'@ =0" @0+ +3y7 (0 = 0" () + 47 (), (iv)

Y =00+ 7+ 47 (0 =" (0 +55" (0, v)




and similarly for higher derivatives. Putting x=0 in (ii) to (v), we obtain

y'0)=2y0)=0, y0)=3/0)=3 s (0)=0, " (0)=5.
By Taylor’s series, we have

2 3 X4

y(x}=y{ﬂ}ﬂy"(ﬂ)+%y”[0}+%y’”{0)+ﬁf" (0

i) b

X X v
+—y (0 +=—y (0) +--
mf() T 0)

Hence

0.1)° . 0.1)* 3 0.1)°

27 (R +-..
24 720 O

y(0.) =1+

=1+0.005+0.0000125, neglecting the last term

=1.0050125, correct to seven decimal places.



Example 8.5 To illustrate Euler’s method, we consider the differential
equation y'=-y with the condition y(0)=1.

Successive application of Eq. (8.8) with A=0.01 gives
y(0.01) =1+0.1(-1)=0.99
7(0.02) =0.99+0.01(~0.99) = 09801

1(0.03)=0.9801+0.01 (-0.9801) =0.9703
(004 =09703+0.01 (09703 = 0.9606

The exact solution is y=¢" and from this the value at x=0.04 is 0.9608.



8.4.2 Modified Eulers Method

Instead of approximating Flx, ) by Flag. pp) in Egq. (8.6} we now
approximate the integral given in Egq. (8.6) by means of trapezoidal rule to
obitain

i
ﬂ=fn+§[f{ﬂh-fa1+ iy, ml (B.13)

We thus obtain the meration formula

I -
i = + [ (3. yp) + Fla, ™. wm=0,12.... (8.14)

where Jp'lt’"]' is the mth approximation to p. The iteration formula (B.14) can
be started by choosing Ji-']{':':' from Euler’s formula:

M =y + i (. ).

Example 8.7 Determine the value of » when y=0.1 given that

We take f=0.03. With ap=0 and p=1.0, we have ria, ypy)=1.0. Hence
Euler’s formula gives

¥ =1+ 0.05(1) =1.05

Further, A =0.053 and .f'{.rl,_j-'l':m}=1_[]525_ The awverage of Flag. /mp) and
.f'{.:i,__;-'fﬂ]} iz 1.0262. The value of J_,]{l]- can therefore be computed by using
Eq. (B.14) and we obtain

¥ =1.0513.

Repeating the procedure, we obtain __i-"lFI" =1.0513. Hence we take p; =1.0513,
which is correct to four decimal places.

MNext, with x =0.05, 1y =1.0513 and &=0.05, we continue the procedure
to obtain ya, i.e., the value of » when x¥=0.1. The results are

¥ —1.1040, FP =1.1055  pi2 =1.1055.

Hence we conclude that the wvalue of » when xy=0.1 is 1.1055.



Example 8.8 Given dyldx= y—x where y(0)=2, find y(0.1) and y(0.2)
correct to four decimal places.

(i) Runge—Kutta second-order formula: With h=0.1, we find k =0.2
and k, =0.21. Hence

1= 50 =24 0.41) =2.2050.

To determine y; = y(0.2), we note that x;=0.1 and y;=2.2050. Hence,
ky=0.1(2.105) =0.2105 and k, =0.1(2.4155-0.2) =0.22155.
It follows that

¥, =2.2050 +% (0.2105+0.22155) = 2.4210.

Proceeding in a similar way, we obtain

Jr=y(03)=2.6492 and y; = y(0.4) =2.8909



We next choose 4= 0.2 and compute y (0.2) and y(0.4) directly. With 7= 0.2.
xp = 0 and yy = 2, we obtain ky = 04 and k>, = 044 and hence y(0.2) =
2.4200. Similarly, we obtain y(0.4) = 2.8880.

From the analytical solution y = x + 1 + ¢, the exact values of 3(0.2)
and v(0.4) are respectively 2.4214 and 2.8918. To study the order of conver-
gence of this method, we tabulate the values as follows:

X CﬂmprE'd ¥ Exact ¥ Difference Ratio

0.2 h=0.1:2.4210 24214 0.0004
h=0.2:2.4200 0.0014 -

0.4 h=0.1:2.8909 2.8918 0.0009
h=0.2:2.8880 0.0038 2

It follows that the method has an A*-order of convergence.
(11) Runge—Kuita fourth-order formula: To determine y{0.1), we have
xp = 0, vy = 2 and i = 0.1. We then obtain

k=02
ky =0.205

ks =0.20525
ks =0.21053.

Hence

¥(0.1) =2 +% (ky + 2ky + 2ks + ky) = 2.2052.

Proceeding similarly, we obtain y(0.2) = 2.4214.



8.6 PREDICTOR-CORRECTOR METHODS

In the methods described so far, to solve a differential equation over a single
interval, say fromx = x, tox = x,.;, we required information only at the
beginning of the interval, 1.e. atx = x,. Predicior—corrector methods are the
ones which require function values atx,, x, i, X,o, ... for the computation
of the function value atx,., A predictor formula s used to predict the
value of y atx,., and then a corrector formula is used to improve the value
Of Yot

In Section 8.6.1 we derive Predictor—corrector formulae which use
backward differences and in Section 8.6.2 we describe Milne’s method
which uses forward differences.



8.6.1 Adams—Moulton Method
MNewton's backward difference interpolation formula can be written as

Fla, ¥ = fy +aVig +$?E r[,+"'["+1:;':"+23v315 e (8.22)

where

n=% and fh:f{:ﬂ.fu}_

If this formula is substituted in

i = Fno + ]J Fla W) ol (B.23)

E a]

we get

F
E =__r.:.+_[ [15+n"-:-'ﬂ:. +—"[’;‘+1*" '-T-'E.ﬁ:.+---}.:ﬂr
a5

1
= Fn +.I']'J- [.l"n -+ TV G +—”':‘”_|_1':| ";"E.l',':]+---]dn
]

1 5 3 251
=+ B 14+=V+-——V2 4+ V34—V ... |y
Fo [ 2 12 8 720 o

It can be seen that the right side of the abowve relation depends only on g,
Mogs W ---, all of which are known. Hence this formula can be used to

compute vy . We therefore write it as

1 5 3 251
" z 3 4
= +&H]I+=V+——=V"+ =V —" +--- |
Fi K [ > 12 B 720 ] o (B.24%
This is called A dfams—Bashforid: formula and is used as a predicror formula
(the superscript p indicating that it s a predicted walue).

A corrector formula can be derived in a similar manner by using Newton’s
backward difference formula ar §&:

.I'i—l-ni—“_ﬁ +wi}zﬁ+ f7 T+ 1-::;_':”_'- 2) il?l.ﬁ_—l—

rla, )= (B.25)



Eocur rreprdle ST We consider again the differential equation discussed in
Examples 8.9 and 8.10, wviz., to solwve " = 1 + ."f; with sy = ¢ and we wish
o ocompuates .8 ard w1 O

Withh & = 0.2, the wvalues of (0.2}, pw{0.4) and (0.6} are computed in
Example §.9 and these wvalues are given in the table Teelonww:

x ¥ ¥ = I+_'|.-'2
] o 1.0

oz o.2027T 1.0411
0.4 0. 4228 1.17B7
0.& o Se41 1 4581

To obtain {0 8L we use Eq. (8.32) and obtain

3 (0.8) =I:Zl+ﬂ:'g—ﬂ[2 (1.0411) —1. 1787 + 2 (1.4681)] — 1.0230

This giwves

FI0E) = 2.0480.
To correct this wvalue of w0LE L we use formula (5.34) and obtain
LSE [I.ITET + 4 (1 46881) + 2.0480] = 1.0294.
Proceeding similarly, we obtain p{1.0) =1.55409. The accuracy in the wvalues

of .8 and w{ 1.0 can, of course, be improved by repeatedly using formula
(8. 34

p(0.8) = 0.4228 +

Eoxxur el S 73 The differential equation _F,.=_r_-;_r _|__FE — 2 satisfies the fiollow ing
otz

X ¥
—0.1 1_0900
o 1_0000
D1 0_aoan
oz O_7ans

Lise Bdilne’s method o obtain the walwe of w0005
Woa first form the following table:

F ¥ ¥ o= x= +_'|.rE -2
—i_ 1 1_ D9 —Oo_BO180

o 1. —1.0

o1 O_zo90o0 —1_19780

o2 O._7aos —1_ZF8316=




Using Eqg. (8.32), we obtain

y(03)= 109+M 2(~1) - (~1.19790) + 2(~1.38164)| = 0.614616.

[n order to apply Eq. (8.34), we need to compute y/(0.3). We have
¥(03)= (03 +(0.614616)° - 2=-1.53247
Now, Eq. (8.34) gives the corrected value of y(0.3):

y(03)= 0.89+% [-1.197900+ 4 (-1.38164) + (~1.532247)| = 0.614TT6.



Unit 4

(a) RangeThe measure of dispersion which is easiest to understand and easiest to
calculate is the range. Range is defined as:
Range = Largest observation — Smallest observation

(b) Mean Deviation
(i) Mean deviation for ungrouped data:

For n observation x,, Xx,, ..., X, the mean deviation about their mean X is
given by

lx, — x|
MD (x)= 7 (1)

Mean deviation about their median M is given by

| x, — M

n

M.D (M) = (2)



(i) Mean deviation for discrete frequency distribution
Let the given data consist of discrete observations X, Xy ooy X occurring with

frequencies f, f,, ..., f , respectively. In this case

MD (3)= -
X) 7 N
x. =M
M.D (M) = J N

where N=  f;.



(c)

(d)

(e)

(f)

(iii) Mean deviation for continuous frequency distribution ( Grouped data).

_ filx; — x|

M.D (x)= ~N (3)
filx; —MI

M.D (M) = N (6)

where x, are the midpoints of the classes, X and M are, respectively, the mean
and median of the distribution.

Variance : Letx , x,, ..., ¥, be n observations with ¥ as the mean. The variance,
denoted by &, is given by

2 i 32
ot = — (x; —x) (7)

Standard Deviation: If o2 is the variance, then <, is called the standard deviation,

is given by
o = Jl (x, — %)°
"

(B)

Standard deviation for a discrete frequency distribution is given by

o = J% filx; —x)7 (9)

where f’s are the frequencies of x;” s and N = I .

i=1
Standard deviation of a continuous frequency distribution (grouped data)
is given by



(2)

G = J% fi(x, —x)° (10)

where x are the midpoints of the classes and f, their respective frequencies.
Formula (10) 1s same as

Gz%\/]\l fxt = f!.xr.]z (11)

Another formula for standard deviation :

L
O, = ﬁ\jN ﬁ}fiz_( ﬁ}’f]z (12)

h

where h is the width of class intervals and y, = and A is the assumed

mearn.

15.1.2 Coefficient of variation It is sometimes useful to describe variability by
expressing the standard deviation as a proportion of mean, usually a percentage. The
formula for it as a percentage is

Standard deviati
Coefficient of variation = ancaryT=Ton » 100

Mean




Example 1 Find the mean deviation about the mean of the following data:

Size (x):

1

3

5

7

9

1

13

15

Frequency (f):

3

3

4

14

7

4

3

4

Solution Mean= x =

42

349+20+98+63+44+39+60 3360
42

fi1x, - X1 _ 3(7T)+3(5)+403) + 14D+ T(D) +4(3)+3(5)+4(7)

M.D. () =

f

42




'21+15+12+14+?+12+15+23_62 3 05
- 42 21 T

Example 2 Find the variance and standard deviation for the following data:
57,64,43,67,49,59,44,47,61, 59

57+64+43+67+49+59+61+59+44+47 550
10 10

Solution Mean (X) = =55

—2
{Ij - I)

Variance (G2) =
n

224002 41224122462+ 4% 167+ 47 1117 + 82
10

662
_ 662
10

Standard deviation (G) =-1,‘.53 =662 =8.13



Example 3 Show that the two formulae for the standard deviation of ungrouped data.

12 2
(x, - ) 2
G:J ‘ and o' = L _x?
n n

are equivalent.

Solution We have (x, - X)* = (x7 =2X x, +X°)

2-2% x+(@7 1

2

x? —-2X(nx)+nx

2 —2



Example 4 Calculate variance of the following data :

Class interval Frequency
4-8 3
8-12 6
12-16 4
16 - 20 7

fiXi 3x6+6x10+4x14+7x18

13
f 20

‘Mean (x) =

fi (x; = @)* 3T +6(=3) +4(1)* +7(5)°

Solution Variance (%) =
(07) 7 5,

'14?+54+4+1?5_19
- = »




Example 5 Calculate mean, variation and standard deviation of the following frequency
distribution:




Solutiomn Let A the assoarmed mean,. be 255 Here & = 10

Mean =X = 25.5 4+ (—10) (0.4)= 21.5

. Fr = =
“Wariance (o™ = H.JH K — Hiw)

1D 10

FO< 70 [TOCI24 — (28

TO24) 28> 28 _ 124:}_16:151

- T T T =T 7T

161 — 127

5. ID {<=)




Unit 5

Correlation 1s a statistical measure that indicates the extent to which two or more variables
fluctuate together. A positive correlation indicates the extent to which those variables increase or
decrease 1n parallel: a negative correlation indicates the extent to which one variable increases as
the other decreases.

When the fluctuation of one wvariable reliably predicts a similar fluctuation in another
variable, there’s often a tendency to think that means that the change 1n one causes the change in
the other. However, correlation does not imply causation. There may be an unknown factor that
influences both variables similarly.

Correlation i1s a stafistical technique that can show whether and how strongly pairs of
variables are related. Although this correlation is fairly obvious your data may contain
unsuspected correlations. You may also suspect there are correlations, but don't know which are
the strongest. An intelligent correlation analysis can lead to a greater understanding of your data.

e Correlation 1s Positive or direct when the values increase together, and
e Correlation 1s Negative when one value decreases as the other increases, and so called
inverse or contrary correlation.



Vi ¥ Ay ¥ Vi

=Y

-
=
L

If the points plotted were all on a straight line we would have perfect correlation, but 1t could be
positive or negative as shown in the diagrams above,

a. Strong positive correlation between x and y. The points lie close to a straight line with y
Increasing as X INcreases.

b. Weak, positive correlation between x and y. The trend shown is that y increases as x
increases but the points are not close to a straight line

c. No correlation between x and y; the points are distributed randomly on the graph.

d. Weak, negative correlation between x and y. The trend shown is that y decreases as x
increases but the points do not lie close to a straight line

e. Strong, negative correlation. The points lie close to a straight line, with y decreasing as x
increases



2.2. Assumption of Correlation

Employing of correlation rely on some underlying assumptions. The variables are assumed
to be independent, assume that they have been randomly selected from the population; the two
variables are normal distribution: association of data i1s homoscedastic (homogeneous).
homoscedastic data have the same standard deviation in different groups where data are
heteroscedastic have different standard deviations in different groups and assumes that the
relationship between the two variables is linear. The correlation coefficient 1s not satisfactory
and difficult to interpret the associations between the variables in case if data have outliers.

An nspection of a scatterplot can give an impression of whether two variables are related
and the direction of their relationship. But it alone 1s not sufficient to determine whether there 1s
an association between two variables. The relationship depicted in the scatterplot needs to be
described qualitatively. Descriptive statistics that express the degree of relation between two
variables are called correlation coefficients. A commonly employed correlation coefficient are
Pearson correlation, Kendall rank correlation and Spearman correlation.

Correlation used to examine the presence of a linear relationship between two variables
providing certain assumptions about the data are satisfied. The results of the analysis, however,
need to be interpreted with care, particularly when looking for a causal relationship.



2.3. Bivariate Correlation

Bivariate correlation 1s a measure of the relationship between the two variables: it measures
the strength and direction of their relationship. the strength can range from absolute value 1 to 0.
The stronger the relationship. the closer the wvalue 1s to 1. Direction of The relationship can be
positive (direct) or negative (inverse or contrary); correlation generally describes the effect that
two or more phenomena occur together and therefore they are linked For example, the positive
relationship of .71 can represent positive correlation between the statistics degrees and the
science degrees. The student who has high degree in statistics has also high degree in science
and vice versa.

The Pearson correlation coefficient 1s given by the following equation:

n

_ i=1(x; — )i —y)
i — 0?2 (i — V)2

Where X isthe mean of variable X wvalues.and Y is the mean of variable V wvalues.

r

Example — Correlation of statistics and science tesits

A study 1s conducted involving 10 students to investigate the association between statistics
and science tests. The question arises here; 1s there a relationship between the degrees gained by
the 10 students in statistics and science tests?



similsemaiomsiarnali ool iemilies T T ST ——

Students 1 > 3 4 3 & 7 g o 10
Statistics 50 33 = 30 14 13 11 70 17 18
Science 50 35 11 51 53 16 12 31 53 36

MNotes: the marks oot -::&' 30
Suppose that (x) denotes for statistics degrees amnd (V) for science degres

Calculatimge the mean (3 . ) :

. S"x 173 — w200
x = —730 Y3 - ¥Yy=7"=7¢ =20

Where the mean of statistics degrees X = 17.3 and the mean of science degrees 7= 2

Takbkle {220 Calculating the eguation parameters

Statistacs Sciemcs

x M x—x I::;au:'—_:T:I-2 »— {J?—T:I'E (2c — D — 3
20 20 27 7 290 o 0 0
23 25 57 32 49 s 2 28
s 11 o3 86 40 o 21 83
29 34 117 136 89 4 16 46
14 23 3.3 10.80 3 o =)
12 16 53 28 00 4 16 21 2
11 13 6.3 30 60 8 &4 S04
21 21 37 13 69 1 1 3.7
17 22 03 009 > 4 06
18 36 o7 049 & 36 i)

I 173 I 200 I 0 I 3561 I 0 I 352 I 228

S (x—x)" =356.1 ., S (»v—3) =252
> (x — ¥ — F) =228

Calculatings the Pearsom correlation coefficient;

- > (x — W — ¥ _ 228
= x— 32 = — 32 ~2E56 1253
==5 =25 ___ o0 761

T (18 BT7O06M1LS 8745y 299 5614




rfver solrfforn

Al=o; the Pearson correlation coefficient is given by the following eguatiocn:

- = (E - =)

=

Table (2 _3) Calculating the eguation parameters

o > o x= e Reguired calculafon
2k 20 AN TN ] Ay
23 25 575 520 a5
] 11 28 [ 8 121
2 24 SO S41 57TE
14 23 I2F 1945 S22 S x=173 | 3 v =200
12 165 19> 144 256 Xy — 3I0BER
11 1= 13> 121 144 EIE = JZ 340
Z1 21 A4 1 A41 A41 E_}:E = Hf 5>
17 L 374 280 484
18 25 A58 F24 a7
173 200 SR8 2540 4253

Calculatime the Pearsom cormrelatiomn coefficient by substitute im the aforementioned eguatiom;

LTI Y200
sess — L EE] . 228 228
= = T [ = Zoo.se1a  D-7el
_ AT3) :}{ _ ({Z00) L3S 6E 1252 -
J{:3349 Fe Ly 4252 A e

Pearson Comelation coefficient 7~ = L7681 exactly the same outpuat of the first eguoation.

The calculation shows a strong positive cormelation (0.781) between the student's statistics
and science degrees. This means that as degrees of stafistics increases the degrees of science
imcreass alsoe. Generally the student who has a high degres im statistics has high degres 1m
sclemce and wvice versa.




3.1. Definition

Regression analysis 1s one of the most commonly used statistical techniques 1n social and
behawvioral sciences as well as in physical sciences which mmvolves identifying and evaluating the
relationship between a dependent variable and one or more independent wvanables., which are
also called predictor or explanatory variables. It 1s particularly useful for assess and adjusting for
confounding. Model of the relationship is hypothesized and estimates of the parameter values
are used to develop an estimated regression equation. Various tests are then employed to
determine if the model i1s satisfactory. If the model is deemed satisfactory, the estimated
regression equation can be used to predict the value of the dependent variable given wvalues for
the independent variables.

Linear regression explores relationships that can be readily deseribed by straight lines or
their generalization to many dimensions. A surprisingly large number of problems can be solved
by linear regression. and even more by means of transformation of the original variables that
result in linear relationships among the transformed variables.

When there 1s a single continuous dependent variable and a single independent variable, the
analysis 1s called a simple linear regression analysis. This analysis assumes that there 1s a
linear association between the two wariables. Multiple regression is to learn more about the
relationship between several independent or predictor variables and a dependent or criterion
variable.

Independent variables are characteristics that can be measured directly: these variables are
also called predictor or explanatory variables used to predict or to explain the behavior of the
dependent variable.

Dependent variable i1s a characteristic whose wvalue depends on the values of independent
variables.



3.3. Assumption of Regression Analysis

The regression model is based on the following assumptions.

The relationship between independent variable and dependent 1s linear.
The expected value of the error term is zero

The variance of the error term is constant for all the values of the independent variable,
the assumption of homoscedasticity.

There 1s no autocorrelation.

The independent variable is uncorrelated with the error term.

The error term 1s normally distributed.

On an average difference between the observed value (v1) and the predicted value (1) 1s
Zero.

On an average the estimated values of errors and values of independent variables are not
related to each other.

The squared differences between the observed value and the predicted value are similar.
There 1s some variation in independent variable. If there are more than one wvariable 1n
the equation. then two variables should not be perfectly correlated.

Intercept or Constant

Intercept i1s the point at which the regression intercepts y-axis.

Intercept provides a measure about the mean of dependent variable when slope(s) are
ZEero.

If slope(s) are not zero then intercept 1s equal to the mean of dependent variable minus
slope x mean of independent variable.

Change i1s dependent variable as we change independent variable.

Zero Slope means that independent variable does not have any influence on dependent
wvariable.

For a linear model. slope 1s not equal to elasticity. That 1s because; elasticity 1s percent
change in dependent variable. as a result one percent change 1n independent vanable.




Example — linear Regression of patfient's age and their blood pressure
A study 1s conducted involving 10 patients to mwvestigate the relationship and effects of patient’s
age and their blood pressure.

Table (3.1) calculating the linear regression of patient's age and blood pressuare

Age | BP
Obs x V Eak 2 Reguired calculation
1 35 112 3020 1225
2 40 128 5120 1600
3 38 130 4040 1444
X =491
4 44 138 G072 1936
=1410
5 67 158 10586 4480 2y
6 64 162 10368 4006 2%y =7T1566
7 59 140 8260 3481 EIE — 26157
2 a0 175 12075 4761
o 25 125 3125 625
10 S0 142 T100 2500
Total 401 1410 T15605 26157
Calculating the mean (X . V) ;
x=—2X_M1_ 497 32V _1410_,.4,
H 10 " M 10



Calculating the regression coefficient;

nYxy-XxYy 10 + 71566 — 491 + 1410
Br= nY x2— (¥ x)2 b= 10 + 26157 — (491)2
715660 — 692310 23350 1 140
Br= 261570 — 241081 Br = 20489
Bo = V- BiX Bo = 141 - 1.140 = 49.1
B, = 141 — 55.974 B, = 85.026

Then substitute the regression coefficient into the regression model

Estimated blood pressure (Y) = 85.026 + 1.140 age
Interpretation of the equation;

Constant (intercept) value 5y = 85.026 indicates that blood pressure at age zero.

Regression coefficient [3; = 1.140 indicates that as age increase by one year the blood pressure
increase by 1.140






