

KALIKADEVI ART'S, COMMERCE & SCIENCE COLLEGE, SHIRUR(KA) Department of Mathematics

REAL ANALYSIS

DEPARTMENT OF MATHEMATICS MR.GHADGE R.B

METRIC SPACE

DEFINITION:*METRIC*

Let X be a non empty set. Define d: $X \times X \rightarrow \mathbb{R}$. Then d is said to be a metric on X if it satisfies the following conditions

• Non negativity: $d(x,y) \ge 0$ for all $x, y \in X$ **o** Definiteness: $d(x, y)=0$ iff $x=y$ **o** Symmetry: $d(x,y) = d(y,x)$ **o** Triangle inequality: $d(x,y) \leq d(x,z) + d(z,y)$ for all x, y, z \in X

DEFINITION: *METRIC SPACE*

A non empty set X along with the metric d on X is called Metric space. It is denoted by (X, d) or simply X.

Example:

Let $X = \mathbb{R}$.

Define d: $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$ by $d(x, y) = |x - y|$ for all $x, y \in \mathbb{R}$

To check: d is a metric on ℝ.

• Non negativity: $d(x,y) = |x - y| \ge 0$ **o** Definiteness: $d(x, y) = 0 \Leftrightarrow |x - y| = 0$ \Leftrightarrow x – y =0 \Leftrightarrow $X = Y$

o Symmetry: $d(x, y) = |x - y|$ $= |-(y-x)|$ $= |y - x|$ $= d(y, x)$ **o** Triangle inequality: Consider $d(x,y) = |x-y|$ $=$ | x –z + z – y | $= |(x-z) - (y-z)|$ $= |(x-z) + (z-y)|$ $≤$ |x-z| + |z-y| $=d(x,z) + d(z,y)$ for all x, y, $z \in \mathbb{R}$ Since d satisfies all the axioms of the metric.

Hence d is the metric on ℝ called *Usual Metric* or *Standard Metric.*

Definition: *NEIGHBOURHOOD OF A POINT*

Let (X,d) be a Metric space.

Let $p \in X$, then a neighbourhood of a point p is a set $N_r(p)$ defined as $N_r(p) = \{ x \in X : d(x,y) < r \}.$ The number $r > 0$ is called radius of $N_r(p)$.

O DEFINITION: INTERIOR POINT

Let (X, d) be a metric space. Let $E \subset X$. Let $p \in E$. Then p is said to be an interior point of E if there exists a neighbourhood $N_r(p)$ such that $N_r(p) \subset E$.

EXAMPLE:

Let $X = \mathbb{R}$

 $E = \mathbb{Z} = \{..., -2,-1,0,1,2,...\} \subset \mathbb{R}.$

W.K.T Neighbourhood of $x = N_x(x) = (x-\epsilon, x+\epsilon)$

For $\epsilon = 2$, The neighbourhood of $-1 = (-3, 1) \notin \mathbb{Z}$.

That is, we cannot find any neighbourhood of any integer which is contained in ℤ.

Therefore Z has no interior points.

EXAMPLE OF INTERIOR POINT:

Let $E = (2, 6) \subset \mathbb{R}$.

All reals between 2 and 6 are interior points.

DEFINITION: OPEN SET

Let (X, d) be a metric space. Let $E \subset X$. then E is said to be an open set if every point of E is an interior point.

EXAMPLE OF OPEN SET:

Let $X = \mathbb{R}$, with usual metric.

• Let
$$
E = (-1, 5)
$$

Points of $E = all$ reals between -1 and 5

Interior point of $E = all$ reals between -1 and 5

Therefore E is open.

In General, Every open interval is open.

• Let $E = (0, 5)$ U $\{7\} \subset \mathbb{R}$

Points of $E = \text{all}$ reals between 0 and 5, 7

Interior points of $E = all$ reals between 0 and 5.

Therefore E is not open.

 \bullet Let $E = [1, 5] \subset \mathbb{R}$

Points of $E = 1$, 5 and all reals between 1 and 5 Interior points of $E = all$ reals between 1 and 5. Therefore E is not open.

Theorem:

Every neighbourhood is an open set.

Proof:

Let (X, d) be a Metric space.

Let $p \in X$. Let $N_r(p)$ be an arbitrary neighbourhood of $p, r > 0$.

To prove: $N_r(p)$ is an open set.

i.e., to prove: Every point of $N_r(p)$ is an interior point.

Let $q \in N_r(p)$ To prove: q is an interior point of $N_r(p)$. Let $d(p, q) = h (h > 0, h < r)$ …………...(1) Let $N_{r-h}(q)$ be a neighbourhood of q. To prove: $N_{r-h}(q) \subseteq N_r(p)$ Let $X \in N_{r-h}(q)$ Now to prove: $x \in N_r(p)$ now $x \in N_{r-h}(q) \Rightarrow d(x, q) < r-h \dots (2)$ Consider $d(x, p) \le d(x, q) + d(q, p)$ (by triangle inequality) $\langle r - h + h = r \quad (by (1) \& (2))$ $d(x, p) < r \Rightarrow x \in N_r(p)$ Therefore we have $N_{r-h}(q) \subseteq N_r(p)$ i.e., there exists a neighbourhood of q which is contained in $N_r(p)$.

 \Rightarrow q is an interior point of $N_r(p)$.

Since q is arbitrary, every point of $N_r(p)$ is an interior point.

 $N_r(p)$ is an open set and

since this is an arbitrary neighbourhood.

We can say that every neighbourhood is an open set.

DEFINITION: LIMIT POINT OF A SET Let (X, d) be a metric space. Let $E \subset X$. Let $p \in X$. Then p is said to be a limit point of E if every neighbourhood of p contains atleast one point of E other than p.

DEFINITION: DERIVED SET

The set of all limit points of E is called derived set of E. It is denoted by E' .

EXAMPLE:

• Let $E = (-1, 10]$

Limit points of $E = -1,10$ and all reals between -1 and 10.

 $E' = \{-1, 10, 11 \text{ reads between } -1 \text{ and } 10\}$

 $= [-1, 10]$

• Let $E = (1,5) \cup \{5\}$

Limit point of $E = 1,5$, all reals between 1 and 5.

DEFINITION: CLOSED SET

Let (X, d) be a metric space. Let $E \subset X$.

Then E is said to be closed set if every limit point of E is a point of E.

EXAMPLE:

 \bullet Let $E = [0, 1] \subset \mathbb{R}$

Limit points of $E = 0$, 1, all reals between 0 and 1.

Points of $E = 0$, 1, all reals between 0 and 1.

Therefore E is closed.

In General, every closed interval is a closed set.

DEFINITION: COMPLEMENT OF A SET Let (X, d) be a metric space. Let $E \subset X$. The complement of E is denoted by E^c and is defined as $E^c = \{ x \in X : x \notin E \}$

EXAMPLE:

 Let (ℝ , d) be a Metric space. $\mathbb{R}^c = \emptyset$, $\emptyset^c = \mathbb{R}$

THE RELATION BETWEEN OPEN AND CLOSED SETS

Theorem:

A set E is open iff its complement is closed. **Proof**:

Necessary part: Let E be open. To prove: E^c is closed. Let p be a limit point of E^c . It is enough to show that $p \in E^c$. Since p is a limit point of E^c , every neighbourhood of p contain at least one point of E^c other than p.

 \Rightarrow No neighbourhood of p is contained in E.

 \Rightarrow p is not an interior point of E.

But E is open.

$$
\Rightarrow p \notin E
$$

 \Rightarrow p \in E^c

Since p is arbitrary,we can say every limit point is a point of E^c .

Therefore E^c is closed.

Sufficient part: Suppose E^c is closed. To prove: E is open. Let $p \in E$ (arbitrary). To prove: p is an interior point of E. Since $p \in E$ which implies $p \notin E^c$. But E^c is closed. \Rightarrow p is not a limit point of E^c . \Rightarrow there exists a neighbourhood N of p which contains no point of E^c .

Which implies that ∃ a neighbourhood N of p such that N \cap $\overline{E}^c = \emptyset$

- i.e., ∃ a neighbourhood N of p such that
- $N \subset (E^c)^c = E$
- \Rightarrow \exists a neighbourhood N of p such that N \subseteq E

 \Rightarrow p is an interior point of E.

Since p is arbitrary, every point of E is an interior point of E.

Therefore E is open.

THANK YOU