

KALIKADEVI ART'S, COMMERCE & SCIENCE COLLEGE, SHIRUR(KA) Department of Mathematics

REAL ANALYSIS

DEPARTMENT OF MATHEMATICS MR.GHADGE R.B

METRIC SPACE

• **DEFINITION**:*METRIC*

Let X be a non empty set. Define d:X \times X \rightarrow \mathbb{R} . Then d is said to be a metric on X if it satisfies the following conditions

Non negativity: d(x,y) ≥ 0 for all x, y ∈ X
Definiteness: d(x, y)=0 iff x=y
Symmetry: d(x,y) = d(y,x)
Triangle inequality: d(x,y) ≤ d(x,z) + d(z,y)

for all x, y, $z \in X$

• **DEFINITION:** *METRIC SPACE*

A non empty set X along with the metric d on X is called Metric space. It is denoted by (X, d) or simply X.

• Example:

Let $X = \mathbb{R}$.

Define d: $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$ by d(x, y) = |x - y| for all $x, y \in \mathbb{R}$

To check: d is a metric on \mathbb{R} .

• Non negativity: $d(x,y) = |x - y| \ge 0$ • Definiteness: $d(x, y) = 0 \Leftrightarrow |x - y| = 0$ $\Leftrightarrow x - y = 0$ $\Leftrightarrow x = y$

• Symmetry: d(x, y) = |x - y|= |-(y - x)|= |y - x|= d(y, x)• Triangle inequality: Consider d(x,y) = |x - y|= | x - z + z - y |= |(x-z) - (y-z)|= |(x-z) + (z-y)| $\leq |x-z| + |z-y|$ =d(x,z) + d(z,y) for all $x, y, z \in \mathbb{R}$ Since d satisfies all the axioms of the metric. Hence d is the metric on \mathbb{R} called *Usual Metric* or

Standard Metric.

Definition: NEIGHBOURHOOD OF A POINT

Let (X,d) be a Metric space.

Let $p \in X$, then a neighbourhood of a point p is a set $N_r(p)$ defined as $N_r(p) = \{ x \in X : d(x,y) < r \}$. The number r > 0 is called radius of $N_r(p)$.

• **DEFINITION**: INTERIOR POINT

Let (X, d) be a metric space. Let $E \subset X$. Let $p \in E$. Then p is said to be an interior point of E if there exists a neighbourhood $N_r(p)$ such that $N_r(p) \subset E$.

EXAMPLE:

Let $X = \mathbb{R}$

 $E = \mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\} \subset \mathbb{R}.$

W.K.T Neighbourhood of $x = N_x(x) = (x - \epsilon, x + \epsilon)$

For $\epsilon = 2$, The neighbourhood of $-1 = (-3, 1) \not\subset \mathbb{Z}$.

That is, we cannot find any neighbourhood of any integer which is contained in \mathbb{Z} .

Therefore \mathbb{Z} has no interior points.

• EXAMPLE OF INTERIOR POINT:

Let $E = (2, 6) \subset \mathbb{R}$.

All reals between 2 and 6 are interior points.

• **DEFINITION:** OPEN SET

Let (X, d) be a metric space. Let $E \subset X$. then E is said to be an open set if every point of E is an interior point.

• EXAMPLE OF OPEN SET:

Let $X = \mathbb{R}$, with usual metric.

• Let
$$E = (-1, 5)$$

Points of E = all reals between -1 and 5

Interior point of E = all reals between -1 and 5

Therefore E is open.

In General, Every open interval is open.

• Let $E = (0, 5) \cup \{7\} \subset \mathbb{R}$

Points of E = all reals between 0 and 5, 7

Interior points of E = all reals between 0 and 5. Therefore E is not open.

• Let
$$E = [1, 5] \subset \mathbb{R}$$

Points of E = 1, 5 and all reals between 1 and 5 Interior points of E = all reals between 1 and 5. Therefore E is not open.

Theorem:

Every neighbourhood is an open set.

Proof:

Let (X, d) be a Metric space.

Let $p \in X$. Let $N_r(p)$ be an arbitrary neighbourhood of p, r > 0.

<u>To prove</u>: $N_r(p)$ is an open set.

i.e.,<u>to prove</u>: Every point of $N_r(p)$ is an interior point.

Let $q \in N_r(p)$ <u>To prove</u>: q is an interior point of $N_r(p)$. Let $d(p, q) = h (h > 0, h < r) \dots(1)$ Let $N_{r-h}(q)$ be a neighbourhood of q. <u>To prove</u>: $N_{r-h}(q) \subseteq N_r(p)$ Let $x \in N_{r-h}(q)$ Now to prove: $x \in N_r(p)$ now $x \in N_{r-h}(q) \Rightarrow d(x, q) < r - h \dots(2)$ Consider $d(x, p) \le d(x, q) + d(q, p)$ (by triangle inequality) < r - h + h = r (by (1) & (2)) $d(x, p) < r \implies x \in N_r(p)$ Therefore we have $N_{r-h}(q) \subseteq N_r(p)$ i.e., there exists a neighbourhood of q which is contained in $N_r(p)$.

 \Rightarrow q is an interior point of $N_r(p)$.

Since q is arbitrary, every point of $N_r(p)$ is an interior point.

 $N_r(p)$ is an open set and

since this is an arbitrary neighbourhood.

We can say that every neighbourhood is an open set.

DEFINITION: LIMIT POINT OF A SET Let (X, d) be a metric space. Let $E \subset X$. Let $p \in X$. Then p is said to be a limit point of E if every neighbourhood of p contains atleast one point of E other than p.

DEFINITION: DERIVED SET

The set of all limit points of E is called derived set of E. It is denoted by E'.

EXAMPLE:

• Let E = (-1, 10]

Limit points of E = -1,10 and all reals between -1 and 10.

 $E' = \{ -1, 10, \text{ all reals between } -1 \text{ and } 10 \}$

= [-1, 10]

• Let $E = (1,5) \cup \{5\}$

Limit point of E = 1,5, all reals between 1 and 5.

DEFINITION: CLOSED SET

Let (X , d) be a metric space. Let $E \subset X$.

Then E is said to be closed set if every limit point of E is a point of E.

EXAMPLE:

• Let $E = [0, 1] \subset \mathbb{R}$

Limit points of E = 0, 1, all reals between 0 and 1.

Points of E = 0, 1, all reals between 0 and 1.

Therefore E is closed.

In General, every closed interval is a closed set.

DEFINITION: COMPLEMENT OF A SET Let (X, d) be a metric space. Let $E \subset X$. The complement of E is denoted by E^c and is defined as $E^c = \{ x \in X : x \notin E \}$

EXAMPLE:

• Let (\mathbb{R}, d) be a Metric space. $\mathbb{R}^{c} = \emptyset, \ \emptyset^{c} = \mathbb{R}$

THE RELATION BETWEEN OPEN AND CLOSED SETS

Theorem:

A set E is open iff its complement is closed. **Proof**:

<u>Necessary part</u>: Let E be open. To prove: E^c is closed. Let p be a limit point of E^c . It is enough to show that $p \in E^c$. Since p is a limit point of E^c , every neighbourhood of p contain at least one point of E^c other than p. \Rightarrow No neighbourhood of p is contained in E. \Rightarrow p is not an interior point of E. But E is open. \Rightarrow p \notin E \Rightarrow p \notin E \Rightarrow p \in E^c Since p is arbitrary,we can say every limit point is a point of E^c .

Therefore E^c is closed.

Sufficient part:Suppose E^c is closed.To prove: E is open.Let $p \in E$ (arbitrary).To prove: p is an interior point of E.Since $p \in E$ which implies $p \notin E^c$.But E^c is closed. \Rightarrow p is not a limit point of E^c . \Rightarrow there exists a neighbourhood N of p which contains no point of E^c .

Which implies that \exists a neighbourhood N of p such that $N \cap E^c = \emptyset$

- i.e., \exists a neighbourhood N of p such that
- $N \subset (E^c)^c = E$
- \Rightarrow \exists a neighbourhood N of p such that N \subset E

 \Rightarrow p is an interior point of E.

Since p is arbitrary, every point of E is an interior point of E.

Therefore E is open.

THANK YOU