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CHAPTER - 1

CLASSICAL MECHANICS




{ Tassical or Noewtonian mwh;mics ;lppg.&lrcd on lhc | 7|h CL‘Illul'.\_r and Was very Successfu]
1 deseribing the physies of the macroscopic world. However. in the beginning of the 20t
contury, experiments revealed a series of atomic and subatomic phenomena that could not
he explained by the old theory. This trigeered the development e ————
classical mechanies a system can be deseribed by a number of dynamic variables. The goal
s t0 be able to caleulate the exact values of these variables at any given time and determine
how these values evolve as a function of time 1. Onee the position of a particle within an
one-dimensional system is known, a series ol other variables such as the velocity, acceleration,
momentum, potential and  Kinetic energy can be calculated. Newton's Law is the basis of
classical mechanies:
F=ma= .‘{i’
i
1.2 : Mechanics of particle: We apply Newtonian mechanics to deduce conservation
laws for a particle in motion. These laws tell us under what conditions the mechanical quantities
like linear momentum. angular momentum, energy etc.are constant in time,

a) Conservation of Linear Momentum:

Ifa force I is acting on a particle of mass m, then according to Newton’s second law of
motion, we have



F=mag= L = i(m.v)

dr dt
where p = mv- is the linear momentum of the particle.
[f the external force, acting on the particle is zero, then
dp

p= = %(m.v) =0

Thus in absence of external force, the linear momentum o
the conservation theorem for a free particle.

b) Conservation of Angular Momentum:

f'a particle is conserved. This is

0
r
P =
S
The angular momentum of a particle P of a mass in about a point O is defined as
R P it " e (1)

where r- is the position vector of the particle P
p=mv- is its linear momentum, |

[f the force on the particle is F, then the moment of force or torque about 0 is defined as L




J=rxp (1)
where - is the position vector of the particle P
p=mv- is its linear momentum.
If the force on the particle is F, then the moment of force or torque about 0 is defined as

b O o

[ we differentiate (1) with respect to t, then

£IZ--i(rx )—ﬂx ;+1‘x£1,—)

dr  dt P dt f dt
_c_i_/_=er —({'—‘xp=vxmv=0andF=ip-:,
dt dt dt
cal _

ot

i.e the rate of change of angular momentum of a particle is equal to the torque acting on

| it.Now, if the torque acting on the particle is zero.i.e.7 =0
dJ
2op s
2 or J=0
Thus in absence of external torque, theangular momentum of a particle is conserved. This

is the conservation theorem of angular momentum of particle.



¢) Conservation of Energy:
i) Work : Work done by an external force F upon a particle in displacing from point 1

to pOint 2
b =
Wis =_!Rdr _____ (1)

ii) Kinetic Energy and Work-Energy Theorem :
According to Newton's second law, I = m.dv/dt and hence

Fdr=m ‘—{‘:.dr - mﬂ.wll cdr=m g'—‘-dl = v.dl]
dt dt dt

Therefore, equation (1) becbme,. |

j_ 2. 1 . o 1
W, =|Fdr= d[—mv2:|=—mv2 ——mv}
I '[ 2 R



1 .
The scalar quantity 5 mv~ is defined as the kinetic energy and denoted by T. Thus the

work done by the force acting on the particle appears equal to the change in the kinetic

encrgy 1.€.,
2
W,; = | F.dr=T,-T,
!

This 1s known as work-energy theorem.

iii) Conservative Force and Potential Energy:

| Fig. Work done by a force on a particle. |



1" the work done (117, by the force in moving a particle from point 1 to point 2 is the
same for any possible path between the points, then the force (and the system) is said to be
conservative. The region in which the particle is experiencing a conservative foree is called
as conservative foree field.

Thus for conservative force

3

|

/’J{ F.dr+ QJL I'.dr =0
! 2

j Fdr=0

Thus. if the force is consevative, the work done on the particle around a closed path in
the force field is zero.

According to stoke’s theorem in vector analysis, we can tranform the equation (1) as
fﬁ' = I I CurtFds 000000 s (2)

Since the work done is zero around any closed path in the conservative force field and

does not depend on the length of the path, we may carry out the integration over the
perimeter of the area ds.

-




Thus. if the force is consevative. the work done on the particle around a closed path in
the force field is zero.
According to stoke’s theorem in vector analysis, we can tranform the equation (1) as
j\[".(/r = J CulFds eeeea- (2)

Since the work done is zero around any closed path in the conservative foree field and
does not depend on the length of the path, we may carry out the integration over the
perimeter of the arca ds.

This gives,

{F.dr = ”.(‘url Fds=0  ====e- (3)
But. /s = (0 and hence in general,

Curl F=00r VxIF =0 ...(24)
Therefore the force can be expressed as,

— ;S = Al -»
F=-V¥V=- ia—’+jal +kaV ...... (4)
ox oy oz

because.

) 217 i - 2 A2 — 2 =3 74
VxVV =i o _6{ + J gy gy +k 6f-fi =0
Oyoz 0©z0y 0z0x Ox0z dxgy oyox
This scalar function V is called the potential or potential energy and depends on position.
In case. if we add any constant quantity to V, equation (4) does not change and hence the
zero or reference level of the potential function V is arbitrary and can be chosen at

convenience.




[we take sealar product of dr with (4) and integrate from position 1 to position 2,
we obtam,

Fdr==[ VV.dr=- ==[ dV =¥,~V,

Now. 11 we assume lhc position I as « and the potential energy to be zero there, then
the potential energy at a point r (position 2) is given by

(1) r I<.dr

The work done by the conservative foree is
W= [* Fdr =¥ -
ol |
which is the change in potential energy when the particle moves [rom | o 2
iv) Conservation theorem:
According to work energy theorem, the amoun t of work done by a force in moving a
particle from 1 to 2 1s given by the change in kinetic energy. i.e.

Wy=|Fdr=T,-1, ... (1)
|

Also. we know that the formula for work done by the conservative force is.



W,y = | Fdr=V, =¥,
From (1) and (2) we get,
V=V =Ty~T,

L +V, =1, +V, =const.
Thus the sum of Kinetic and potential energy of particle remains constant in a conscrvative
force field. This i1s known as the law of conservation of energy.
(l'\’ .
nm.—=1F
dt

If we multiply by v=dr/dt to both sides and integrate with respect to t.
we obtain.

j m.ﬂ.vdt = I F .ﬂ.dt + Const.(say E)
dt dlt

i lmv.v dt=jF.dr+E
dt| 2
i lmvz]dt—jF.drzE
dt| 2




| .
me I“r = I
2
'V = I
i represents the conservation cncs‘;;,y theorem

.3 : Mechanics of system of particle:

Newton's third Law of motion, equal and opposite foree:
is called the weak Taw of action and reaction,

Center of mass :

i, does not hold for all forces, Iy

Center of mass moves as if the total external force were acting on the entire mass of the
system concentrated at the center of mass. Internal forces that obey Newton’s third law,
have no effeet on the motion of the center of mass.

i d*R 2
L Ry 7=2E”
. ¢
Motion of center of mass is unaffected.
Total lincar momentum :

dr dR
. P=) m —=M—
: Z’ v/



Conservation Theorem for the Linear Momentum of a System of Particles:

If the total external force is zero, the total linear momentum 1s conserved. The strong law
of action and reaction is the condition that the internal forces between two particles, in
addition to being equal and opposite, also lie along the line joining the particles. Then the
time derivative of angular momentum is the total external torque:

dL
df
Torque is also called the moment of the external force about the given point. Conservation
Theorem for Total Angular Momentum: L is constant in time if the applied torque is zero.
inear Momentum Conservation requires weak law of action and reaction. Angular Momentum
Conservation requires strong law of action and reaction.
Total Angular Momentum:

L= rxp =RxMv+) rxp,

=N




[otal angular momentum about a point O is the angular momentum of motion concentrated
at the center of mass, plus the angular momentum of motion about the center of mass. If the

center ol mass is at rest w.r.t. the origin then the angular momentum is independent of the
point of reference.
Total Work:

; . el 2
W,, =T, =T, where T is the total kinetic energy of the system: I'= 52’":"1
]

Total Kinetic cnergy:

T =— Zm\'“z—mv +— Zm

Kinetic energy. hkc angular momentum, has two parts: the K.E. obtained if all the mass
were concentrated at the center of mass, plus the K.E. of motion about the center of mass.
Total potential energy:

V—Zv +— Z\

1,7 iay

If the external and internal forces are both derivable from potentials it is possible to
define a total potential energy such that the total energy T +V is conserved.

The term on the right is called the internal potential energy. For.rigid bodies the internal
potential energy will be constant. For a rigid body the intemal forces do no work and the

internal potential energy remains constant



1.4 Constraints :
Ofien the motion of a particle or system of particles is restricted by one or more conditions.
The limitations on the motion of a system are called constraints and the motion is said to be

constrained motion
Classification of Constraints: Constraints are classified as,

1) Scleronomic : If constraint relations do not explicitly depend on time.
e.g. tigid body.
2) Rheonomie: If constraint relations depend on time.
e.g. A bead sliding on a moving wire.
3) Holonomic: If constraint relations are made independent of velocity. -
g. A cylinder rolling without sliding down an inclined plane..
4) Non holonomic: If constraint relations are not holonomlc that 1S these relations are
irreducible functions of velocities. o
e.g. sphere rolling without sliding down an mclmed plane i
5) Bilaleral: If the constraint relations are expressed i in the form of equatlons
e.g. rigid body. | | '



6) Unilateral: If the constraint relations are expressed in the form of inequalities.
¢.¢. Motion of molecules in a gas container or Motion of particle on the surface of
a sphere under the action of gravity one time rolling on the surface of sphere &

> . 2~ 2
other time leaving the surface ( T 2d )

7) Conservative: If Forces of constraint do not do any work & total mechanical energy
of the system is conserved while performing the constraint motion.
e.¢. Simple pendulum with rigid support.

8) Dissipative: If the forces of constraint do work & the total mechanical energy is not
conserved,
e.g. Pendulum with variable length.

1.4.1 Holonomic constraints:

The nomenclature *holonomic’ constraints comes from the word ‘holos’ which means
integer in Greek and *whole or integrable’ in latin languages. Constraints limit the motion of
a system and the number of independent coordinates, needed to describe the motion, is
reduced. For example, if a particle is allowed to move on the circumference of a circle, then
only one coordinate g, =@ is sufficient to describe the motion, because the radius («) of

the circle remains the same. If r is the position vector of the particle at any angular coordinate
@ relative to the centre of the circle, then

rl=a or r-a=0 (1)

oooooo



expresses the constraint for a particle in circular motion. Similarly in the case of

Eq. (1) : .
s are spherical coordinates

a particle, moving on the surface of a sphere, the correct coordinate
r. g and #. where @ and ¢ only vary. Thereforeq, =60 and ¢, =¢ are the two

independent coordinates for the problem, because the constraint is that the radius of the

sphere (a) is constant (L.e., I = a). Since in the circular motion of the particle, one independent

coordinate 0 is needed. the number of degrees of freedom of the system is 1. For the

partide. constrained to move on the surface ol the sphere, two independent coordinates
7

—

specify its motion and hence the degrees of freedom 15
Suppose the constraints are present in the system of N particles. If the constraints are
expressed in the form of equations of the form
[ (7.1, 15500) =0
then they are called holonomic constraints. Let there be m number of such equations to
describe the constraints in the N particle system. Now, we may use these equations (o
eliminate m of the 3N coordinates and we need only n independent coordinates to describe
the motion. given by
n=3N-m
The system is said to have n or 3V —; degrees of freedom. The elimination of the
dependent coordinates can be expressed by introducing = 3N —m, independent variables

g. These are referred as generalized coordinates.




Superfluous Coordinates : The idea of degrees of freedom makes it clear that when
we are using, say rectangular cartesian coordinates, we have several redundant or superfluous
coordinates, 1f there are holonomic constraints. This redundance and non-independence of
the coordinates makes the problem complicated and this difficulty is resolved by using the
gcneralized coordinates. For example, let us consider a body be thrown vertically upward
with an initial velocity v,. The body will move in a straight line, In Cartesian coordinates,

the motion will be represented as l
e — O’ Y= "0, o : .Ly[)' .2 = ()

where X and Z axes are horizontal and Y-axis is in vertical direction. At different values
of the time t, only y coordinate varies and x and z coordinates remain the same. Therefore
x and z coordinates are superfluous coordinates. In conclusion, we need only one coordinate
to describe the vertical motion,

Some more example of holonomic constraints :

a) Rigid body : In case of the motion of a rigid body the distance between any two
particles of the body remains fixed and do not change with time. If » and r, are the

postion vector of the ith and jth particles, then the distance between them can be expressed
by the condition

‘r,. - rj‘ =r,(const.)



If (xv.y.z) and (x,,y,.z,)are the cartesian coordinates of the two particles.then the
constraints will be expressed as
T 2 . 2 - N 2 ;
('\f —-\]) -'L(};( .1)1') +("; ")) hina C" ...... (2)
This constraint is called holonomic and scleronomic.
b) Simple pendulum with rigid support :
In case of a simple pendulum with rigid support, the constraint is that during the motion,

the distance(/) of the bob from the point of suspension, then the condition of constraints
can be expressed as,

\r|=I(const.)
This is also called as holonomic and scleronomic

1.4.2. Nonholonomic constraints:

The constraints which are not expressible in the form of eq. (2) are called nonholonomic.
For example, the motion of a particle, placed on the surface of a sphere of radius a, will be
described by

|r| 2a or r—az0
in a gravitational field, where r is the position vector of the particle relative to the centre
of the sphere. The particle will first slide down the surface and then fall off. The gas molecules



in a container are constrained to move inside it and the related constraint is another example

of nonholonomic constraints. If the gas container is in spherical shape with radius a and r is
the position vector of a molecule, then the condition of constraint for the motion of molecules

can be expressed as
,r’ Sa or r—a<i()
[t is to be mentioned that in holonomic constraints, cach coordinate can vary independently
of the other. In a notholonomic system, all the coordinates cannot vary independently and

hence the number of degrees of frecdom of the system is less than the minimum number of
coordinates needed to specily the configuration of the system.

Constraints are further described as (i) rheconomous and (ii) scierononious.

[n the former. the equations ol constraint contain the time as an explicit variable, while in
the later they are not explicitly dependent on time. Constraints may also be classified as

(1) conservative and (i1) dissipative. In case of conservative constraints, total mechanical
energy of the system is conserved during the constrained motion and the constraint forces
do not do any work. In dissipative constraints, the constraint forces do work and the total
mechanical energy is not conserved. Time-dependent or rheonomic constraints are generally

dissipative.



cxample of non holonomic constraints:
Rolling disc : A system is said to be non-holonomic if it corresponds to non-integrable

differential equations of constraints. Such constraints cannot be expressed in the form of
eq.(3). Obviously holonomic system has integrable differential equations of constraints,
expressible in the form (3). In order to explain this, let us consider a disc rolling on a rough
horizontal X-Y plane with the condition of constraint is that the plane of the disc 1s always
vertical. We choose the coordinates X, y for the centre of the disc, for the angle of rotation
about the axis of the disc and @ for the angle between the axis of the disc and X-axis

z y

X

3 500

X
Q X Q X
[ Fig. : Vertical disc rolling on a horizontal XY-plane |

If a is the radius of the disc, the constraint that the axis of the disc is perpendicular to the
vertical direction, gives the velocity v of the disc with magnitude

d
v—a¢—a7



“
A5 the direction of the velocity is perpendicular to the axis of the disc, the components of

the velocity along X-axis and Y-axis are

Vv, = gt vsinf) | v, = 6. ~veos
Sodl T dt
ﬂ = a@sin 0 and f{?’_ = —( ‘—I(/’- cos
! dt dt dt
dx—asinOd¢g =0 and dv+acostdgp=0 ... (4)

None of the equations, given by (4), can be integrated without solving the entire problem.

Thus the constraint cannot be put in the form — f(#,1,,74,....t) = 0 and hence the constraint

is nonholonomic.

1.5 Principal of virtual work:
In order to investigate the properties of a system, we can imagine arbitrary instantaneous

change in the position vectors of the particles of the system e.g., virtual displacements. An
infinite virtual displacement of ;j# particle of a system of N particles is denoted by or; . This
is the displacement of position coordinates only and does not involve variation of time i.e.,

o, =0 (q,,qy5---q,)
Suppose the system is in equilibrium, then the total force on any particle is zero i.€.,

F=0i=12,..N

The virtual work of the force F, in the virtual displacement 6% , will also be zero i.e.,



(5”’ — F..Jr- = O

Similarly. the sum of virtual w ork for all the particles must vanish i.e.,
oW = Z F.on =
=|

This result represents the principle of virtual work which states that the work done is
sero in the case of an arbitrary virtual displacement of a system from a position of equilibrium
The total force F on the ith particle can be expressed as

F:= "% f;

/
where £ is the applied force and /, the force of constraint.
Hence eq. (1 1) assumes (hL form

Vr m+V‘; o1 =0

I-l = I
We restrict ourselves to the systems where the virtual work of the forces of constraints is

e res
zero. e.g.. in case of a rigid body. Then

iﬁ-é"; =
=l

For equilibrium of a system, the virtual work of applied forces is zero.



1.6. D’Alembert’s Principle :
According to Newton's second law of motion, the force acting on the i particle is given

by F ‘_/L" = J2
i 7
i
This can be writlen as prove
=P = I =1,2,.N

These equations mean that any particle in the system is in equilibrium under a force,
which is equal the actual foree /4 plus a reversed elfective foree I?. Therefore, for virtual

displacements ;.
l\'

S (F - £)%; =0
=1

il

But /= F"+ f then
N

Z(ru-/’)bf +Z/ or =0

=l
Again, we restr ict ourselves to lhc, systems for which the virtual work of the constraints is

zero, Z Ji0 =0 Then,
o

S (7 =B )on =0

i=1
This is known as D’ Alembert’s principle. Since the forces of constraints do not appear in

thfe eguallon and hence now we can drop the superscript. Therefore, the D’ Alembert’s
principle may be written as



> (F-£)o, =0

I

1.7 Lagrange’s equations from D’Alembert’s Principle :
Consider a system of N particles. The transformation equations for the position vectors

of the particles are

S P (B T, R SN () R (1)

‘.'l ABENT &R B oy -— i —
h
.:l

where t is the time and ¢, (k =1, 2....,n) are the generalized coordinates.

Differentiating eq. (1) with respect to t, we obtain the velocity of the j# particle, ie.,

dr, O, dq, Or, dq, or, dq, dr, dyg, Or
= + Tiiive e 3 BT + +

dt 0q, di 0g, di dq, dt dgq, dl ol
_a N\ L O

¥p=h= e 0 e (2)



where ¢, are the generalized velocities.
The virtual displacement is given by

-
< or 1 ] )
e Y ¢
¢ i (\I' " g T ‘XI) .' ..... ' L (‘)(/‘ ' ..... ' ’ ('x,
q g, ﬂ(h (7(/" "
or % or

ot
|
p—
-
-
—~
L~

e 3)

Since by definition the virtual displacements do not depend on time
According to D*Alembert’s principle,

\
N (F -1 )
T:‘( ----- (4)
Here
Srs=VEYS o 33|54 =Yg
= : (_:]1 ! ‘z;(:qk A e i a(A ¢ /A -kzi /\(2[' ----- (5)
> O y Ox
Go=) Fet=MF Sy p Y\ p 02 "
=1 09y I3 TOq. 'oq, “og, - (6)



are called the components of generalized (oree associated with the peneralized coordinates

¢, This may be mentioned that as the dimensions of the gencralized coordinates need not be
those of length, similarly the generalized force components (5, may have dimensions different

than those of force. However, the dimensions ol (7, &y, arc those of work.

Further, _
\ N W "
> RS =Y mpy g, = Z Z"" L p—— (7)
i=1 i=1 k=1 ( q& : ( ql.
Noooarn X Or Cd(or )
N it e — | my.—— |=mp.—| —= | e
‘,Lzl‘m:ll 3(1‘, ,Z{li( l[ A (‘3([‘. ) c/{(f)([k ) (8)
[t 1s easy to prove that,
dl o) _ @ (dz;]_éi 9
i\eq, |~ og\d)"3q, ‘
or, Oy, 10)
éq, oq. (
N . N A v
m:rzﬂ =z 4 :v: . —my; = || e (11)
=) oq, | dt k aq,



= ’ (7 Q,l . }] B (7-( 'Xﬂ-l m (‘)"\)'))J,(S(/
D) A PRI e PRl

o, \ 5
" ] v ooy UL <
=5 (_/I(')/ lﬁ(./ B s (12)
ﬁ_",’ ) g, l "W‘/.t_
Here
" )2 g0 3y
(1 ) - \‘1 f ,‘ ()I I ( P ('3)
dr | ¢ ([‘ = 34,04, g,

-

on . e .
which has been obtained by (reating o, as a single quantity being the function of

the generalized coordinates ¢, and time t.

dr, & 3 5!
but. Vi dr Z aqj aqk a,

and 1ts partial derivative with respect to ¢, is



v, 0 (dr) & o .
8i. B It~ ou (/'}7, ------ (14)
q, o4, \ di -1 oy, oy,
d( or v
; 3 ¢ 2 |
From equation (13) and (14) dr\ o, o,
ov 0 ( dr; 3 | i o %
.: ces (. oy - (. \ o q, " ) / "),I\ f (l‘;)
oq, fq \dr) éq, |73 %, | dy, iy,
ﬂ(}, )
as the constraints arc holononiic and (;;‘ =0, is kronecker delta which is 1 for j=k
),

and zero for j =k Substituting for ZF,(‘"; from (6) and Z/'f-()'f} from (12) in eq.
i=l

1=1

(4). the D.Alembert.s principle becomes,

~||d|oT | oT
Z {d’{ }‘ :|-Gk 0q, =0

k=l aq, ) Oq,




dfer|_or|_, g_{a'r} B |
ar|éq, | oq o larleg, | 9g, | * (16)

This forms as general form of Lagrange’s equations.
For a conservative system, the force is derivable from a scalar potential V.

% AV | (7]/ /(. (7_[/]

Hence from eq. (6), the generalised force component are

> Sl 4 W 0
G‘. -’—'Z Z(a 6\ (7 ay, +( Z,)
i=]

g, =\ 0x; Oq, 6)’4 dq, 0z, dq,

Clearly the right hand side of equation is the partial derivatives of -V with resect to
qi

& o OV

6q. .~ (17)

[d{ar} or|_ ov
dt agx aqL oq,



d|or|_o ¥ p
dt l(‘q‘J 5(1& 561; |

T| or-V)
d/ 15“1& o T L18)

Since the scalar potential V is the function of generalized coordinates g, only not
depending on generalized velocites, we can write eq.(18) as
dajoT-v)| oT-V) _0
dr| oq, & @020 e (19)

We define a new function given by
L=T-V

which is called the Lagrangians of the system. This equation(19) takes the form
{ oL| oL _,
dl |0q, | og,

This equa -
quation is known as Lapranee’s equation for the ocnnearvatice exrataia




Simple application of Lagrange’s formulation:

a) Simple pendulum:

13 A

-

8- - -~

[ Fig. 2.5 Simple pendulum |
Let @ be the angular displacement of the simple pendulum from the equilibrium position. If /

be the effective length of the pendulum and m be the mass of the bob, then the displacement
along arc OA=s is given by




[ the potential energy of the system, when the bob 1s at 0, is zero,
then the potential energy, when the bob is at A, is given by

Vo (OB) = mg(OC — BCY = mg(l —1cos 0) = mgl(l —cos 0)

L=T-V or L= 5 ml* 0% — mgl(1 —cos Q)
ol ol, s
e =—meulsin@ and =ml 0
Now, =5 5 00

Substituting these values in the Lagrange’s equation (here there is only one generalized

coordinate ¢, = (/)

0

d|oL| oL _
Zf{a()f_a_o'"
We get,

d

= mi*0)+ mglsin0 =0 or mi*0+mglsin0 =0



or (§+§-sin 8=10

This represents the equation of motion of a simples pendulum.
For small amplitude oscillations, sin=8 . and therefore the equation of motion of a

simple pendulum 1s.

. q
d+=80=0
/
This represents a simple harmonic motion of period, given by
/
T - 247 —_—
g

b) Particle in space:
i) Motion of one particle using cartesian coordinates:

d|eT | or '

The generalized forces needed in 6—(1; - o, =0, are obviously F,, F, and F..Then
6T oI oT _
&x Oy 0Oz

-

0




ol o e ; oT ;
—=MmxX, ——=my, = mz
ox oy 0z

and the equation of motion are
d . d . d, .
—(mx)=F, —@my)=F,, —(mz)=F,
dt S | T di
We are thus led back to the original Newtons equations of motion.
i) Motion of one particle using polar coordinates:
We must express Tin terms of j gnd @ . The transformation equations are,
x=rcosd

y=rsinf
The velocities are given by,

X=rcos@—rf@sinb
y=rsin@+rfcosd

. |
The kinetic energy T = 5 m(%* + %) then reduces formally to




= ;lm[f"' + (/'())3]

An alternative derivation of above equation is obtained by recognizing that the polar
components of the veloeity are ;= along v, and ¢ along the direction perpendicular to r, denoted

by the unit vector() . Henee, the square of the velocity expressed in polar coordinates is
simply [ ’A(rdy ] :

dr = vdr 4+ 10d0 + K-
for the differential position, ( ,in eylindrical coordinates, restricted to plane 70 where ¢ and

-~

0 are unit vectorsinrand ¢ direction, respectively, the components of the generalized force can

dr,
be obtained from the defination Oy = Z E.
i aq,
Therefore.
or "
O, =F.—=Fr=F

or
or A



Since the derivative of r with respective to ¢ is, by thedefination of a derivative, a vector i,
the direction of ¢ . There are two generalized coordinates and therefore two Lagrange equations
The derivatives occuring in the requation are,

or w5 QT . dfaor ;
—=mrl°, —=mr, . mi
or or dr\ or
and the equation itsclfis.
mit—mr@° = I,

The second term being the centripetal acceleration term. For g equation, we have the

derivatives,
8—T =) E = 1111‘29, il'-(mrzé) =m0 + 2mrr0
ol o0 dt
So that the equation becomes
d

E(mr2 ) = mr’0 + 2mri0 = rk,
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¢) Lincar Harmonic Oscillator :

Let us consider the motion in the direction of x axis. The kinetic energy of the harmonic
oscillator is given by

o - - 5
I = —

X X=-
2

l =Velocity of the oscillator
dl

and the potential is
I :j/".(i\‘

Wherel'=-kx is the restoring foree acting on a body and k is force constant. so
V= J —RXX = Ik.\'.d.\'

Y
=— OFr

: V = = kx”, where the constant of intergration has been set equal

to zero by choosingv=0atx=0
Thus lagrangian

or I

L=T~=¥ =lmic2 —lkx2
2 2



2 P -

s hooives — = — IM2X = nX
& oives, —.
which gi 3¢ 2

oL _ 2 oty

—

d
4 ox 2

For this case
Lagrangian equation is given by

d (81, ) _OL _,

dy \ ax ox
On substituting equation (1) and (2) in this equation we get,
i(m.i‘) ~kx=0
ax
or mx+ kx =0 where X means
d’x d,.. .
— X3)=X
di* dt &)
mx+kx=0

Which is required equation of motion of one dimensional harmonic oscillator.



d) Atwood’s Machine :
Figure shows an example of a conservative system
with holonomic, seleromous constraint (the pully is assumed -
frictionless and massless). Clearly there is only one independent coordinates x, the position
of the other weight being determined by the constraint that the length of the rope between them
is /. The potential energy is
i //__ _\ e

N/

[-x

]

|Fig. : Atwood’s machine |

V'=mgx—-m,g(l—x)
while the kinetic energy is

1
= E(M, +M,)%*



Combining the two, Lagrangian has the form
1 .
L=T=-¥K= -2-(1\/[, + M )x* +mgx+m,g(l—x)

There is only one equation of motion, involving the derivatives

oL
éé.:([‘/[l—/‘/lz)g '(;—:(A’Il’*'Mz)ui‘

OxX Ox

So that we have,
(M, +M,)x= (M, -M,)g

‘ (M,-M,)g
S (M +M,)

which is similliar result obtained by more elementry means. This trivial problem emphasizes
that the forces of constraint-here the tension in the rope appear nowhere in the Lagrangian

formulation. By the same token, neither can the tension in the rope be found directly by the
lagrangian method.




1)

2)

4)

: ~ e : “the point like and
The branch of physics which deals with details of motion of the po

«r Miuituple Choice Queston ..

rigid or deformable extended object is called ............

. U o .. . " : - .s.
a)  Quantum mechanics. b) (,I.n.sslc.fl mechanic
¢)  Statistical mechanics. d) None of these.
The momentum of particle is constant ..........
a)  In the presence of external forees on a particle.
b) In the absence of external forces on 2 particle.
¢)  Inthe absence of internal forees on o particle.
d)  None of these
When is the position vector and is the linear momentum of the particle at the
given instant the angular momentum of the partilee is ...........
2) L=Fxp b) L=Fp
) L=F P d) None of these
The rate of change of angular momentum is ...........
a)  Torque. b) Moment of inertia.
¢)  moment of momentum.

a)
c)

Constant.
ZEero.

d) None of these.

If no torque is acting a particle then its angular momentum is ...........

b) varable.
d) None of these.



.
61 According 10 the law of conservation of lincar momentum if the total extemal

-

forve acting on the system is equal to zero then the total lincar momentum s .....
a) Conserved. b) not conserved,
¢} constant. d) None of these.

7) I ihe wotal external torque acting on a system of particle is zero then the total
angular momentum is constant is called as ...
a)  Law of conservation of angular momentum,
b)  Law of conservation of linear momentum,
¢)  Law of conservation of total linear momentum.
d)y  Law of conservation of total angualar momentum,

§) Constaints applied in a system ...........
#)  Reduce the number of degree of freedom.
b)  Increase the number of degree of freedom.
¢)  Equal to number of degree of freedom,
d)  None of these.

9)  The constaints involved when a particle is restricted to move along a curve of

surface are ..........,
a)  Only one co-cordinates, b) only two coordinates.
¢)  Both (a) and (b), d) None of these.
19) The constaints inveolved when a particle is restricted 1o move along a curve
of surface are ...
a)  Holonomic. h) Non holonomic,
¢} Both (a) and (b). d) None of these,
d oL @l

n i &71 &h konwn as ...,

a)  Lagrsngains eq. of motion for a conservative system.
by  Newton's equation of motion,
¢)  Hamiltonion equation of motion.
d}  None of these.
12) If a system is in static equilibrium then virual work done by all the applied force

el o i P,
vinishes sz W e
L

a)  Principle of virtual work.  b)  Principle of superposition.
¢)  Doppler principle. d) None of these.
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13 The relation oo
b)  D'Alemberts Principle.

w) Dopplers Pranciple.
d)y  None of these.

¢} Lagmmpes Panciple.
1) A particle of mass m mowves in o consenvative force fickd which of the following
is ot Lagrangiun,

AL 2 18l oL
) il "I:..,"_L.:() b) .‘._._(;:._._.__:_go
dr 06 & dl o2z oZ

d 70 v
___......._:0 N » fthcsc
© woL oL d): Noee:o

15) Lagrngains cquation are applicable when the system is ...
a)  Conscrvative. b} Non canservative,

¢}  Both (a) and (b) d) None of these.

16) The force of constraints obays ..........
a)  Newtons graviational law.
b))  Einsteins relativity.
¢)  Newtons third law of motion.
d)  friction.
17) Consider the sliding of a beed on a circularwire of radius a in the xy plane. The

equation of constraint is then the constraint is known as ... ‘
a)  Hot integrable constraint. b) Non holonomic constraint.

¢)  Holonomic constraint, d) Virtual constraint,

18) For a conservative system the Lagrangian equation of motion in terms of
generalised co-cordinates ¢ and momentum P is ...........

400 W 1

D wai, o, b 3, aaq,

oo oL da_a_,

9 dag, adq, ) e g
18) Atwoods machine is an example of ........ system.
a) Lincar b) angular

¢) Conservative d) None of these.



d 6L OL

i ~ ") | — : 5
: : represents Lagre squation 1n .........
19) 4 & g, 04, p s Lagrangains equation in
a)  General system. ‘ b) Lincar system.
¢) Conservative. d) None of these.

N
-~ w1 . A BT =
20) OW= 2:1‘, or; =0 1593 4 1515 61 6. SRRR——
= i=l

2)  D’Alemberts Principle. b) Virtual work done.
¢)  Lagrangain equation. d) None of these.
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