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 The macroscopic description of a system of ~1023 particles 

may involve only a few variables! 

“Simple systems”:  Macroscopically homogeneous, isotropic, 

uncharged, large enough that surface effects can be neglected, not 

acted upon by electric, magnetic, or gravitational fields.

 Only those few particular combinations of atomic coordinates 

that are essentially time-independent are macroscopically 

observable.  Such quantities are the energy, momentum, 

angular momentum, etc.  

 There are “thermodynamic” variables in addition to the 

standard “mechanical” variables.

Why Thermodynamics?



Thermodynamic Equilibrium 

In all systems there is a tendency to evolve toward states whose 

properties are determined by intrinsic factors and not by previously 

applied external influences.  Such simple states are, by definition, 

time-independent.  They are called equilibrium states. 

Thermodynamics describes these simple static equilibrium states.

Postulate: 

There exist particular states (called equilibrium states) of simple 

systems that, macroscopically, are characterized completely by the 

internal energy U, the volume V, and the mole numbers N1, …, Nr

of the chemical components.



The central problem of thermodynamics 

is the determination of the equilibrium 

state that is eventually attained after the 

removal of internal constraints in a 

closed, composite system.

 Laws of Thermodynamics



 Link macroscopic behavior to atomic/molecular properties 

 Calculate thermodynamic properties from “first principles” 

(Uses results for energy levels etc. obtained from quantum 

mechanical calculations.)

What is Statistical Mechanics?



The Course

…not collection of facts and equations!!! 

 Discovery of fundamental physical laws and concepts

 An exercise in logic (description of intricate phenomena 

from first principles)

 An explanation of macroscopic concepts from our 

everyday experience as they arise from the simple 

quantum mechanics of atoms and molecules. 



Prerequisites

• Tools from elementary calculus

• Basic quantum mechanical results

Resources

• “Physical Chemistry: A Molecular Approach”, by D. A. 

McQuarrie and J. D. Simon, University Science Books 1997

• Lectures 

(principles, procedures, interpretation, tricks,  insight)

• Homework problems and solutions

• Course web site (links to notes, course planner)

The Course



Course Planner

http://www.scs.uiuc.edu/~makri/444-web-page/chem-444.html/444-course-planner.html

o Organized in units.

o Material covered in lectures.  What to focus on or review.

o What to study from the book. 

o Homework assignments.

o Questions for further thinking.  



Grading Policy

Homework         30%    (Generally, weekly assignment)

Hour Exam #1   15%     (September 29th)

Hour Exam #2   15%     (November 3rd)

Final Exam        40%     (December 14th)

Please turn in homework on time!  May discuss, but do not copy 

solutions from any source!

10% penalty for late homework.  

No credit after solutions have been posted, except in serious 

situations.



Math Review

• Partial derivatives

• Ordinary integrals 

• Taylor series 

• Differential forms



Differential of a Function of One Variable
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Differential of a Function of Two Variables
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Special Math Tool
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PROPERTIES OF GASES



The Ideal Gas Law

  or  , /PV nRT PV RT V V n  

Extensive vs. intensive properties

Units of pressure

2

5

5

1 Pa 1 N m
1 atm 1.01325 10  Pa
1 bar = 10  Pa

1
1 torr = atm

760


 

Units of temperature

Triple point of water occurs 

at 273.16 K (0.01oC)



Deviations from Ideal Gas Behavior

 
PV

z
RT



“compressibility factor”

Ideal gas: z = 1

z < 1:     attractive intermolecular forces dominate

z > 1:     repulsive intermolecular forces dominate

T=300K



Van der Waals equation

 2

a
P V b RT

V

 
   

 

At fixed P and T,  V is the solution of a 

cubic equation.  There may be one or three 

real-valued solutions.

The set of parameters Pc, Vc, Tc for which the number of solutions changes 

from one to three, is called the critical point.  The van der Waals equation has 

an inflection point at Tc.



Isotherms 

(P vs. V at constant T)

: 0

0 : unstable region
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 Large V:  ideal gas behavior.

 Only one phase above Tc.

 Unstable region: liquid+gas coexistence. 



Critical Point of van der Waals Equation
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The law of corresponding states

2 21
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Eliminate  and  from the van der Waals equation:
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All gases behave the same way under similar 

conditions relative to their critical point.  

(This is approximately true.)



Virial Coefficients
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Simple Models for Intermolecular Interactions
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(b)  Square Well Potential

(a)  Hard Sphere Model
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(c)  Hard Sphere Potential with r-6 Attraction



Interpretation of van der Waals Parameters

From the van der Waals equation, … 2  ( )V

a
B T b

RT


32
,
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Ab N  2 6

3
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Comparing to the result of the square well model,

32
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Comparing to the result of the hard sphere model with r-6 attraction,

molecular diameter

 molecular volume (repulsive interaction)

    related to strength/range of attractive intera
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The Lennard-Jones Model
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Attractive term: dipole-dipole, or dipole-induced dipole, or induced dipole-

induced dipole (London dispersion) interactions.



Origin of Intermolecular Forces

The Born-Oppenheimer Approximation:

Electrons move much faster than nuclei.  Fixing the nuclear positions,

       nucl el
ˆ ˆ ˆ ,    

:   electronic coordinates

: nuclear coordinates

i i i

i

i

H T H R r R

r

R

Only Coulomb-type terms!

                 el
ˆ , ; ;i i n i i n i n i iH E  r R r R R r R

Adiabatic or electronic or 

Born-Oppenheimer states

Electronic energies; form potential energy surface. 

Responsible for intra/intermolecular forces.



INTRODUCTION TO STATISTICAL MECHANICS 

The concept of statistical ensembles

An ensemble is a collection of a very large number of 

systems, each of which is a replica of the thermodynamic 

system of interest.



The Canonical Ensemble 

A collection of a very large number A of systems (of volume V,

containing N molecules) in contact with a heat reservoir at temperature 

T.  Each system has an energy that is one of the eigenvalues Ej of the 

Schrodinger equation.  

A state of the entire ensemble is specified by specifying the “occupation 

number” aj of each quantum state.  The energy E of the ensemble is

j j

j

a EE =

The principle of equal a priori probabilities:

Every possible state of the canonical ensemble, i.e., every distribution of 

occupation numbers (consistent with the constraint on the total energy) is 

equally probable.    



How many ways are there of assigning energy eigenvalues to the members 

of the ensemble?  In other words, how many ways are there to place a1

systems in a state with energy E1, a2 systems in a state with energy E2, etc.?

Recall binomial distribution:

The number of ways A distinguishable objects can be divided into 2 groups 

containing a1 and a2 =A -a1 objects is

1 2
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Multinomial distribution:

The number of ways A distinguishable objects can be divided into groups 

containing a1, a2,…  objects is
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The distribution peaks sharply about its maximum as A  increases.

To obtain ensemble properties, we replace the weighted average by the 

most probable distribution.

To find the most probable distribution we need to find the maximum of W

subject to the constraints of the ensemble. 

This requires two mathematical tools, Stirling’s approximation and 

Lagrange’s method of undermined multipliers.

The Method of the Most Probable Distribution



Stirling’s Approximation

This is an approximation for the logarithm of the factorial of large numbers.  

The results is easily derived by approximating the sum by an integral.

ln ! lnN N N N 



Lagrange’s Method of 

Undetermined Multipliers

1 1Extremize the function  ( , , ) subject to the constraint  ( , , ) 0.n nf x x g x x 
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The function has an extremum if   0. 
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This relation connects the variations of the variables, so only n-1 of them are 

independent.  We introduce a parameter  and combine the two relations into
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Let’s pick variable xm as the dependent one.  We choose  such that 
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This allows us to rewrite the previous equation in the form
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Because all the variables in this equation are independent, we can vary them 

arbitrarily, so we conclude 
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Combined with the equation specifying , we have 
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Notice that Lagrange’s method doesn’t tell us how to determine .   



The Boltzmann Factor
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where  and  are Lagrange multipliers.  Using the expression for W, 

applying Stirling’s approximation and evaluating the derivative we find
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At a temperature T the probability that a system is in a state with quantum 

mechanical energy Ej is 
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Postulate: 

The ensemble average 

is the observable “internal” energy.

Thermodynamic Properties of the Canonical Ensemble
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The partition function for a system of two types of noninteracting particles, 

described by the Hamiltonian

with energy eigenvalues                                   

Separable Systems

(1) (2)ˆ ˆ ˆ H H H 

(1) (2)

jk j kE   

(1) (2) Q Q Q

is                                    

If the energy can be written as a sum of various (single-particle-like) 

contributions, the partition function is a product of the corresponding 

components.



The partition function for a system of N distinguishable particles is

where q is the partition function of one particle.                                   

Distinguishable vs. Indistinguishable Particles

NQ q

The partition function for a system of N indistinguishable particles is

/ !NQ q N



The Hamiltonian of a molecule is often approximated by a sum of 

translational, rotational, vibrational and electronic contributions:

Within this approximation the molecular partition function is 

Partition Function for Polyatomic Molecules

trans rot vib elecˆ ˆ ˆ ˆ ˆ H H H H H   

trans rot vib elecq q q q q



Atom in box of volume V:

Translational Partition function
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Translational energy of an ideal gas:

trans 3
 ( , )

2
U V T RT

Translational contribution to the heat capacity of an ideal gas:

trans 3
 

2
vc R



There is no general expression for electronic energies, thus one cannot write an 

expression for the electronic partition function.  However, electronic excitation 

energies usually are large, so at ordinary temperatures

Electronic Partition function

elec ( , ) 1q V T



Vibrational Partition Function for Diatomic Molecule
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Vibrational contribution to heat capacity of  diatomic molecule:
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Rotational Partition Function for Diatomic Molecule
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rot ( 1)

   (rigid rotor approximation, (2 +1)-fold degeneracy)
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 ,  "rotational temperature"

8

B

B

Ik T T h
q

h Ik




   



Rotational energy of diatomic molecule:
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Rotational contribution to heat capacity of  diatomic molecule:
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rot

rot

 
T

q

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Symmetry factors:

If there are identical atoms in a molecule some rotational operations result in 

identical states.  We introduce the “symmetry factor”  to correct this 

overcounting.

For homonuclear diatomic molecules at high temperature  =2.



Polyatomic Molecules

n atoms, 3n degrees of freedom.

Nonlinear molecules:

3 Translational degrees of freedom

3        Rotational degrees of freedom

3n-6  Vibrational degrees of freedom

Linear molecules:

3 Translational degrees of freedom

2        Rotational degrees of freedom

3n-5  Vibrational degrees of freedom

vib vib

1

 ,

3 5  (linear)      

3 6  (nonlinear)
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q q
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Rotational partition function for linear polyatomic molecules

Symmetry factor:

The number of different ways the molecule can be rotated into an 

indistinguishable configuration.
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Asymmetric molecules:  1  (e.g. COS)

Symmetric molecules:  2  (e.g. CO , HC CH) 
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Rotational partition function for nonlinear polyatomic molecules

Rotational properties of rigid bodies: three moments of inertia  IA , IB , IC .
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The symmetry factor equals the number of pure rotational elements (including the 

identity) in the point group of a nonlinear molecule.



The Normal Mode Transformation

Expand the potential in a Taylor series about the minimum through quadratic terms:
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We will show in a simple way how one can obtain an independent mode form by doing a 

coordinate transformation.  In practice, the normal mode transformation proceeds after the 

Hamiltonian in expressed in internal coordinates.



Transform to mass-weighted Cartesian coordinates   i i im xq
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  
 

   q q

Introduce normal mode coordinates  (with conjugate momenta ):   i iQ P  U Q q

T T T         q K q Q U K U Q Q Λ Q

,    or   T   U K U Λ   K U U Λ

U is the orthogonal matrix of eigenvectors,  L is the diagonal matrix of eigenvalues.

3 3
2 2 2

1 1

1 1
Now    

2 2

n n

i i i

i i

H P Q
 

  



The Equipartition Principle

Every quadratic term in the Hamiltonian of a system contributes  ½ kBT  to the 

internal energy  U and  ½ kB to the heat capacity  cv at high temperature.

Diatomic molecule:  3½ kB

Linear triatomic molecule:  6½ kB

Nonlinear triatomic molecule:  6 kB

2

2

2

ˆ1 1ˆTranslation in one dimension:      (one quadratic term)  
2 2

1 1ˆRotation about an axis:      (one quadratic term)   
2 2

    (linear molecules: 2 such terms, nonlinear molecules: 3 su

B

B

p
H k

m

d
H k

d

 

 

2
2 2

ch terms)

ˆ1 1ˆ ˆVibration:     (two quadratic terms)  
2 2

B

p
H m x k

m
  



THE FIRST LAW OF THERMODYNAMICS

The first law is about conservation of energy 

(in the form of work and heat)



Mechanical Work

Mechanical work:

Convention: work done on the 

system is taken as positive.

Pi , Vi

m

Pf , Vf

piston held 

down by pins

removing pins

h

extw P V  

Expansion of a gas

Infinitesimal volume change:   extw P Vd d 

Work performed by the gas:   

ext ( )
f

i

V

V
w P V dV 



Reversible Processes

 When the process is reversible the path can be reversed, so expansion and 

compression correspond to the same amount of work.  

 To be reversible, a process must be infinitely slow.    

A process is called reversible if  Psystem= Pext at all times.  The work expended to 

compress a gas along a reversible path can be completely recovered upon reversing 

the path.  

( )
f

i

V

V
w P V dV 

A process is called reversible if  Psystem= Pext at all times. 



Reversible Isothermal Expansion/Compression of Ideal Gas

ln
f

i

V
w nRT

V
 

Reversible isothermal compression: minimum possible work 

Reversible isothermal expansion: maximum possible work 

P
P

V
VfVi

Pi

Pf



Exact and Inexact Differentials

Internal energy :  state function

:  exact differential

, independent of the path
f

f i
i

U

dU

dU U U U   

A state function is a property that depends solely on the state of the system.  It does not 

depend on how the system was brought to that state.  

When a system is brought from an initial to a final state, the change in a state function is 

independent of the path followed.  

An infinitesimal change of a state function is an exact differential.

P

Work and heat are not state functions and do not correspond to exact differentials.

Of the three thermodynamic variables, only two are independent.  It is convenient to 

choose V and T as the independent variables for U.



The First Law

U q w  

P

Postulate:  The internal energy is a state function of the system.  

Work and heat are not state functions and do not correspond to exact differentials.

The sum of the heat q transferred to a system and the work w performed on it equal 

the change U in the system’s internal energy.

dU dq PdV 



Work and Heat along Reversible Isothermal Expansion

for an Ideal Gas, where U=U(T)

P

ln C
AC A

A

V
w nRT

V
 

 AB A B Aw P V V  

0BCw 

0 ln C
AC AC A

A

V
U q nRT

V
   

C

B

T

BC BC V
T

q U c dT   
B

A

T

AB V
T

U c dT  

 
B

A

T

AB AB AB V A B A
T

q U w c dT P V V     

C
B A

A

V
T T

V


reversible 
isothermal

P

V
VCVA

PA

PC

A

C

B

reversible 
constant-pressure



Free Expansion

P

Suddenly remove the partition

No work, no heat! 0U 

V

T

U
dU c dT dV

V

 
   

 
( ) 0U U T T   

For real, non-ideal gases these hold approximately, and                  is small. 
T

U

V

 
 

 



Adiabatic Processes

P

A process is called adiabatic if no heat is transferred to or out of the system.

ad ad,U w dU dw  

   (ideal gas)

VdU c dT PdV

nRT
dV

V

  

 

P

V
VCVA

PA

PC

A

C

B

reversible 
constant-pressure

reversible adiabatic

reversible isothermal

D

If cV(T) is known, this can be used to determine 

T (and thus also P) as a function of V.  

For a monatomic ideal gas,

3
2

3
2

   V

D A

A D

c nR T

T V

T V

 

 
 

 

independent of

Adiabatic cooling!

Gases heat up when compressed adiabatically.  

(This is why the pump used to inflate a tire becomes hot during pumping.)



Enthalpy

P

Heat capacity at constant pressure:

H U PV 

P Vc c nR 

  enthalpy functiondH dU PdV VdP dq VdP    

=P

P

H
c

T

 
 

 

Ideal gas:

Heat transferred at constant pressure is enthalpy change.



Reversible Adiabatic Expansion of Ideal Gas Revisited

0

,

ln ln

If  /   is constant (e.g., monatomic ideal gas),

V P

V P

P

V

P V

dq c dT PdV c dT VdP

c dT PdV c dT VdP

c
d V d P

c

c c 

     

  

 

 2 1

1 2

V P

V P


 

 
 

For a monatomic ideal gas, 
5 5

,
2 3

Pc nR  

5
3 const.PV 



ENTROPY AND THE SECOND LAW

The second law is about entropy and its role in determining whether a 

process will proceed spontaneously.

Processes evolve toward states of minimum energy and maximum disorder.  

These two tendencies are in competition.



Entropy

P

Postulate:  

There exists a state function S called the entropy.  This is such that, for a reversible 

process, 

A statement of the second law: 

No process is possible whose sole effect is the absorption of heat from a reservoir and 

the conversion of this heat into work.  

dq
dS

T




1/T is the integrating factor for .dq

0dS 

S has units of R (or kB).  For a reversible process, dU TdS PdV 



P

Isolated system is a system that cannot exchange any matter or energy with the 

environment.

The second law:   The entropy of an isolated system never decreases.

A spontaneous process that starts from a given initial condition always leads to the 

same final state.  This final state is the equilibrium state. 



Entropy of an Ideal Gas

0 0
0

0

( ) ln ln ( ) ( ) ln

( , )

V

V

T V

V
T V

nRT
dU c dT TdS PdV TdS dV

V

dT dV
dS c nR

T V

V
S c T d T nR d V f T f T nR

V

S T V

     

  

    



 

independent of the path! 

0 0
0

0

( ) ln ln ( ) ( ) ln

( , )

P

P

T P

P
T P

nRT
dH c dT TdS VdP TdS dP

P

dT dP
dS c nR

T P

P
S c T d T nR d P g T g T nR

P

S T P

     

  

    



 



The Clausius Principle

The Clausius principle states that

No process is possible whose sole result is the transfer of heat from a cooler body to a 

hotter body.

The Clausius principle is another statement of the second law.

A B

A B
A B A

A B A B

0   (isolated system)

1 1

dU dU dU

dU dU
dS dS dS dU

T T T T

  

 
      

 

A B

According to Clausius’ principle, if  TA > TB then heat will flow from A to B, i.e.,

0dS 

A spontaneous process evolves in the direction of increasing entropy.



Reversible vs. Spontaneous (Irreversible) Processes

In an isolated system 0 .

Reversible process:    .

Spontaneous (irreversible) process:  .

In general,  .

dq

dq
dS

T

dq
dS

T

dq
dS

T

















A reversible adiabatic process is an isentropic process, dS = 0.



The Caratheodory Principle

This is yet another statement of the second law.  It states that 

In the neighborhood (however close) of any equilibrium state of a system (of any 

number of thermodynamic coordinates) there exist states that cannot be reached by 

reversible adiabatic processes.

Caratheodory’s statement is equivalent to the existence of the entropy function.

P

V

S1

S3

S2

Family of isentropic (constant S) 

surfaces that don’t intersect.



Proof of Existence of Non-Intersecting Adiabatic Surfaces

Suppose B can be reached from A by a reversible adiabatic process.  Let’s suppose C 

can also be reached from A via a reversible adiabatic process.

P

V

A

B

C

,

,

Consider the process   .

0

0   (heat absorption)  

0

A B C A B C A B C A

B C

A B C A B C

A B C A

U q w

q

w q

     



  

  

   

 

  

So in this cycle there is heat absorbed that is converted into work.  This is in 

contradiction with the second law.  We arrived at this contradiction by assuming 

there are two reversible adiabatic processes starting from point A.  



The Carnot Cycle

0 0  

(the system does work)

ABCDA AB CDU q q w      

AB:  reversible isothermal at temperature T1

BC:  reversible adiabatic

CD:  reversible isothermal at temperature T2 < T1

DA:  reversible adiabatic

Efficiency of Carnot engine: 1
CD

AB AB

w q

q q
   

Entropy changes:  2

1 2 1

,
B

AB CD CD
AB CD AB

A
AB

dq q q q T
S S S

T T T q T


         

2
2

1

1 1   (unless  0)
T

T
T

    

P

V

A

B

C

D

One can never utilize all the thermal energy given to the 

engine by converting it into mechanical work.  



The Internal Combustion Engine

1. Intake stroke.  A mixture of gasoline vapor and air is 

drawn into the cylinder (EA).

2. Compression stroke.  The mixture of gasoline vapor and 

air is compressed until its pressure and temperature rise 

considerably (AB).

3. Ignition.  Combustion of the hot mixture is caused by an 

electric spark.  The resulting combustion products attain 

a very high pressure and temperature, but the volume 

remains unchanged (BC).

4. Power stroke.  The hot combustion products expand and 

push the piston out, thus expanding adiabatically (CD).

5. Valve exhaust.  An exhaust valve allows some gas to 

escape until the pressure drops to that of the atmosphere 

(DA).

6. Exhaust stroke.  The piston pushes almost all the 

remaining combustion products out of the cylinder (AE).

P

V

C

D

A

B

E

In the gasoline engine, the cycle involves six processes, four 

of which require motion of the piston and are called strokes.  

The idealized description of the engine is the Otto cycle.



Thermodynamics of the Otto Cycle

1

1 1 1
c D A B

h C B A

q T T V

q T T V







 
       

  

1 1Reversible adiabatic compression AB:  

BC is reversible absorption of heat  from a series of 

reservoirs whose temperatures range from  to :

.  

If we assume  is constan

C

B

A A B B

h

B C

T

h V
T

V

T V T V

q

T T

q c dT

c

  

 
t, ( ).h V C Bq c T T 

1 1 1 1Reversible adiabatic expansion CD:    or  

DA is reversible rejection of heat  to a series of reservoirs whose temperatures range 

from  to : ( ).
A

D

C C D D C B D A

c

T

D A c V V D A
T

T V T V T V T V

q

T T q c dT c T T

       

   

P

V

C

D

A

B

E

/  : compression ratioB AV V



Other Ideal Gas Engines

See http://www.ac.wwu.edu/~vawter/PhysicsNet/Topics/ThermLaw2/Entropy/GasCycleEngines.html

copied in   444-web-page/Ideal Heat Engine Gas Cycles.htm



Entropy of Reversible Isothermal Expansion 

of an Ideal Gas

2 2

1 1

sys sys sys

sys sys

2 sys 2
sys

1
1

env

Reversible isothermal expansion:

But 0

ln 0

The heat entering the system was absorbed from the environment.  Then

V V

V V

dq dU d w

dU dq PdV

dq PdV dV V
S nR nR

T T V V

dq d

 





 

 

  

     

 

  

sys env sys univ, 0.q S S S     



Entropy of Spontaneous Expansion of an Ideal Gas

sys sys sys

2
sys

1

Spontaneous expansion:    0

Entropy is a state function, so the entropy change of the system has the 

same value as that during a reversible (isothermal) expansion:

ln 0

Becaus

q U w

V
S nR

V

   

  

env env univ

e no heat is absorbed from the environment,

0 0, 0.

The entropy of the system increased, but the entropy of the environment

remained unchanged.

dq S S      



Statistical Mechanical Definition of Entropy

ensemble lnBS k W

Completely ordered ensemble:  1 2 3 ensemble1, 0 0a a a S     

Maximum disorder:  1 2 3  (set that maximizes )a a a W  

sys ensemble

1
S S

A



 

ensemble

ensemble

ln ln ! ln ! ln ln

ln ln

Use populations    

ln ln

           ln ln ln

j j j j

j j

B B j j

j

j

j

B B j j

j

B B j B j j

j j

W a a a a

S k k a a

a
p

S k k p p

k k p k p p

     

 



 

  

 





 

A A A A

A A

A

A A A A

A A A A A

sys ensemble

1
S S

A

!
Use     and apply Stirling's approximation.

!j

j

W
a



A

sys lnB j j

j

S k p p  



Pure and Mixed States

If all replicas of our system in a particular ensemble are in the same state n, i.e., 

then This is called a pure ensemble.1, 0 0.  n i np p S  

Note: the quantum state n need not be an eigenstate of the Hamiltonian.

If the members of the ensemble are in different quantum states, i.e., 

hen This is called a mixed ensemble.1   for all , t 0.  ip i S 

The canonical ensemble is a mixed ensemble.



Entropy of the Canonical Ensemble

 

1

1 ln ln

i

i

E

i

E

B i B B

i

p Q e

S k Q e E Q k U k Q



  







     

lnB

U
S k Q

T
 

2

,

ln
From    it follows thatB

N V

Q
U k T

T

 
  

 

,

ln
lnB B

N V

Q
S k T k Q

T

 
  

 



Entropy of Monatomic Ideal Gas

trans
trans

,

ln
lnB B

N V

Q
S k T k Q

T

 
  

 

trans

,

ln 3
.  Using Stirling's approximation to ln !,

2N V

Q N
N

T T

 
 

 

3
2

2

5 2
ln

2

B

A

mk T V
S nR nR

h N

  
    

   



Molecular Interpretation of Work and Heat

,
jE

j j j

j

e
U p E p

Q



   j j j j

j j

dU p dE E dp  

variation of energy levels 
without changing populations; 

can be done by changing   
the volume. 

change populations without 
changing energy eigenvalues;      

can be done by heating                   
or cooling

j

j j j

j jN

E
dU p dV E dp PdV dq

V

       
 

 

,

lnj

j B

j NN

E Q
P p k T

V V 

   
     

   
 j j

j

dq E dp  

,

,j jE E j

j jN N

EQ
Q e e

V V

 




    

     
    

 



3
2

2

,

1 2 ln

!

    ideal gas law!

N

N

N

B

m Q N
Q V

N h V V

N T
P k T nR

V V







   
    

  

 

Example: Monatomic ideal gas

We see that the ideal gas law is obtained by using relations obtained for a gas of non-interacting 

particles.   



The Boltzmann Factor:  

Determination of the Lagrange Multiplier

 ln ln lnB j j B j j j B j j

j j j

S k p p dS k p dp dp k p dp        

1
Bk

T
 

because   0j

j

dp 

 lnB j j B j j B

j j

dq
dS k E Q dp k E dp k dq

T
  


        



THE THIRD LAW

The third law is about the impossibility of attaining the absolute zero of 

temperature in a thermodynamic system. 



P

2

1
2 1( ) ( ) ( ) ln    under constant 

V

V V

T

V
T

U S
dU TdS PdV c T

T T

S T S T c T d T V

    
       

    

  

2

1
2 1( ) ( ) ( ) ln    under constant 

P

P P

T

P
T

H S
dH TdS VdP c T

T T

S T S T c T d T P

    
       

    

  

Entropy as a Function of Temperature



P

The third law:  

Absolute zero is not attainable via a finite series of processes.

or, according to the Nernst-Simon statement, 

The entropy change associated with any isothermal reversible process of a condensed 

system approaches zero as the temperature approaches zero.

   at constant Vc
dS dT V

T


3 2Crystals:    as  0    as  0Vc T T dS T dT T  

The entropy of a system that has a non-degenerate ground state vanishes at the absolute 

zero.

lnB j j

j

S k p p  



P

First-Order Phase Transitions

Many thermodynamic variables are discontinuous across first-order phase transitions.

S

T

I

0
( )

T

Pc T dT 

0

II ( )
T

P
T

c T dT Phase I

Phase II
0

H

T



0T

(constant P)



Helmholtz and Gibbs “Free” Energies

     Helmholtz free energy

( , )

     Gibbs free energy

( , )

A U TS

dA TdS PdV TdS SdT SdT PdV

A A T V

G A PV U TS PV

dG SdT PdV PdV VdP SdT VdP

G G T P

 

      



    

       



Reversible isothermal process under constant volume:   dA = 0

Reversible isothermal process under constant pressure:   dG = 0



Legendre Transforms

( , )

,
S

U U S V

U
dU TdS PdV P

V



 
    

 

It is often desirable to express a thermodynamic function in terms of different 

independent variables.  Most often this new desirable variable is the first 

derivative of a fundamental function with respect to one of its undesirable 

independent variables; for example,

We are seeking a general tool for finding a new function that contains the 

same information as the original fundamental thermodynamic function, but 

where the “undesirable” variable has been eliminated in favor of the 

“desirable” one.  In the previous example,

We seek a new function ( , ) that is equivalent 

to  but which depends on the variable  rather than .

H H S P

U P V





General Theory of Legendre Transformation

Given a function f (x), we seek an 

equivalent function (i.e., one containing 

the same information as f ) whose 

independent variable is df /dx.  

The curve f (x) can be reconstructed from 

the family of its tangent lines.

A tangent line can be specified by its slope  (new independent variable)

and intercept .  

Notice  

f

f
f

x








 


  

f

x

( )f x f x  

We solve   ( )  for  and substitute in the above relation to obtain 

( ).  This is possible if   is single-valued, i.e., 0 at all .

f x x

x f f x



 

 

  

“Legendre tranform of f”



Application of Legendre Transform Theory

( , )U U S V

dU TdS PdV



 

( , ) ( )G G T P A P V

H TS U TS PV

dG SdT VdP

   

    

  

( , )A A T V U TS

dA SdT PdV

  

  

( , ) ( )H H S P U P V

dH TdS VdP

   

 

S

U
P

V

 
  

 

V

U
T

S

 
 

 

T

A
P

V

 
  

 

P

H
T

S

 
 

 



Maxwell’s Relations

2 1

1 2

1 1 2 2

1 2

1 2

( , )

x x

f x x

df y dx y dx

f f
y y

x x

 

    
    

    

2 1

2 1

1 2x x

y y

x x

    
   

    

Conversely, if the Maxwell relation is satisfied, one can conclude that  df is 

an exact differential.



Examples

V S S V

dU TdS PdV

U U T P
T P

S V V S

 

          
            

          

,
V T T V

dA SdT PdV

A A S P
S P

T V V T

  

          
            

          

S P

dH TdS VdP

T V

P S

 

    
   

     T P

dG SdT VdP

S V

P T

  

    
    

    



Applications of Maxwell’s Relations

2

1
2 1

2
2 1

1

At constant ,   

  along an isothermal process

Ideal gas: ln

V T

T V

V

V
V

V

S S
dS dT dV

T V

S P
T dS dV dV

V T

P
S S dV

T

P nR V
S S nR

T V V

    
    

    

    
    

    

 
   

 

 
    

 



Entropy of a gas:



2

1
2 1

At constant ,   

  along an isothermal process

We may choose a sufficient

T T V

T V

V

V
V

U S P
dU TdS PdV P T P T

V V T

U P
T dU dV P T dV

V T

P
U U P T dV

T

       
             

       

     
       

     

  
      

  


1 1ly large value of   such that  is given by

the ideal gas law, then calculate the internal energy at a different volume 

where the gas does not exhibit ideal behavior.

V U

Internal energy of a gas:



Pfaffian Forms

Extensive variable Intensive variable Work

V (gas volume) -P -P dV

L (wire length) F  (force) F dL

A (film area) S  (surface tension) -S dA

M (magnetic dipole  moment) H  (magnetic field) H dM

… … …

i i

i

dU TdS Y dX  

:   extensive variable

:    intensive variable

i

i

X

Y

Pfaffian form



PHASE EQUILIBRIUM

What is the equilibrium state of a multi-component system?



Carbon Dioxide 

(Typical Case)

Phase Diagrams

Water

Phase transitions (melting, freezing, boiling, sublimation, etc.)



chem    "chemical work"j j

j

dw dnm  Intensive variable m  such that

Chemical Potential

(The sum is over all components of a system and  nj are the mole numbers.)

j j

j

j j

j

j j

j

j j

j

dU TdS PdV dn

dH TdS VdP dn

dA SdT PdV dn

dG SdT VdP dn

m

m

m

m

  

  

   

   









, , , ,

, , , ,

j i j i

j i j i

i

i iS V n S P n

i iT V n T P n

U H

n n

A G

n n

m

 

 

    
    

    

    
    

    

Pure substance:  ( , , ) ( , ) ( , )G P T n n g P T g P Tm  

The chemical potential of a pure substance is the molar Gibbs free energy.



An isolated system tends to attain the state of maximum entropy with respect 

to its internal (extensive) degrees of freedom, subject to the given external 

constraints.

dS = 0,  d2S < 0

Consequence:

The thermodynamic potentials attain minimum values with respect to their 

internal extensive variables at equilibrium, subject to the given external 

constraints.  

General Conditions of Equilibrium



I. Thermal Equilibrium

Constraints: 

const., const., const.

"Internal variable":  

A B A B

A

V V U U U

U

    A B

rigid, diathermal wall 

impermeable to matter

( , )   and   ( , ) ( , )

Since the volumes cannot change,   

1
From     we find    

A B A B

A A A A A A A B B B

A A A A
A B A

A B A B

V V V V

V

U U S V S S U V S U V

S S S S
dS dU dU dU

U U U U

S
dU TdS PdV

U T

  

           
           

            

 
   

 
 and therefore

1 1

At equilibrium 0 for any .  It follows that

A

A B

A

dS dU
T T

dS dU

 
  

 


A BT T



II. Thermal and Mechanical Equilibrium

Constraints: 

const., const.

"Internal variables":  ,

A B A B

A A

V V V U U U

U V

     A B

movable, diathermal wall 

impermeable to matter

1
From     we find   ,

A A B B

A B A B

A A A A
A A B B

A A B B

V U V U

A A A A
A A

A B A B

V V U U

V

S S S S
dS dU dV dU dV

U V U V

S S S S
dU dV

U U V V

S
dU TdS PdV

U T

          
          

          

             
             

                

 
   

 
   and therefore

1 1
.

At equilibrium 0 for any , .  It follows that

U

A B
A A

A B A B

A A

S P

V T

P P
dS dU dV

T T T T

dS dU dV

 
 

 

  
     

   

 ,A B A BT T P P 



III. Equilibrium with Respect to Matter Flow

Rigid, diathermal 

wall permeable to substance 1  

1Internal variables:  ,A AU n

A B

1 1

1 1

1 1, ,, ,
A A B BA A B B

A A B B
A A B B

A A B B

V n V nV U V U

S S S S
dS dU dn dU dn

U n U n

         
         

         

1

1 ,

j j

j U V

S
dU TdS PdV dn

n T

m
m

 
      

 


1 1
1

1 1 A B
A A

A B A B
dS dU dn

T T T T

m m  
      

   

1 1,A B A BT T m m At equilibrium  



1st Order Phase Transitions: 

The Clausius-Clapeyron Equation

   

I I I I I

II II II II II

I II
II I II I

I II

B A

B A

d S dT V dP

d S dT V dP

dP S
V V dP S S dT

dT V

m m m

m m m





    

    


    



dP H

dT T V






P

T

Phase I

Phase II

Clapeyron equation

A
A

B



The Clapeyron equation is an expression of Le Chatelier’s principle.  

Liquid-to-vapor transition

Solid-to-liquid transition

0, 0 0l g l g dP
S V

dT

      

Increase in pressure causes conversion to the higher-density liquid phase.  

0

If  0 then 0

If  0 then 0.  This is the case with water.

s l

s l

s l

S

dP
V

dT

dP
V

dT







 

  

  



Approximation for liquid-vapor phase transition:

,  (ideal gas),  sog l g RT
V V V

P


Clausius-Clapeyron approximation  
2

1 l gdP H

P dT RT






Statistical Mechanical Calculation of Chemical Potential

, ,P T T V

G A

n n
m

    
     

    

, ,

ln ln
B

T V T V

Q Q
k T RT

n N
m

    
      

    

2

, ,

ln ln
lnB B B

N V N V

Q Q
A U TS k T T k T k Q

T T

     
        

     

lnBA k T Q 



Chemical Potential of Ideal Gas

0

0

ln ln ,  orBq k T P
RT RT

V P P
m   

ln ln ln ! ln ( ln )
!

ln
ln

Nq
Q Q N q N N q N N N

N

Q q

N N

      






ln ln ln

B
A B

A

B
B

n V k T
PV nRT N RT Nk T

N N P

q k T q
RT RT k T RT P

V P V
m

    

     

0

0

ln
P

RT
P

m m 

0 5  standard pressure (10  Pa)P



SOLUTIONS



Imagine increasing the mole numbers from 0 to their final values by varying a 

dimensionless parameter :  

We consider a two-component system with mole numbers n1 and n2.

1 1 2 2dG VdP SdT dn dnm m   

1 1 2 2   at constant  and dG dn dn P Tm m 

1 1 2 2,dn n d dn n d  

1 2 1

1 1 2 2 1 1 2 2 1 1 2 2
0 0 0

( )
n n

G dn dn n n d n nm m m m  m m       

1 2 1 1 2 2

:  partial molar free energiesi

i i

G G G G n G n

G

G m

   





are functions of all the variables, including nj.

Using a similar procedure we can write

The partial molar free energy is the chemical potential of the substance, i.e., an 

intensive variable.  However, the partial molar free energies generally depend on 

the mole fraction                     .  This is so because the partial derivatives 1 1 2/( )n n n

1 2 1 1 2 2 ( :  partial molar volumes)iV V V V n V n V   

, , j i

i

i T P n

G

n
m



 
  

 

The partial molar volumes depend on the mole fraction of the particular substance 

in the solution and are not additive when substances are mixed!  This statement 

applies generally to any extensive variable.   Of course extensive variables still 

scale linearly with the total number of moles, provided the mole fraction of each 

substance remains fixed.  



Euler Relations

1 2( , , , , ).U U S V n nThe internal energy U is a function of extensive variables,

Based on the previous remarks, U is a homogeneous first order property, i.e., 

1 2 1 2( , , , , ) ( , , , , )U S V n n U S V n n    

Differentiating with respect to ,

1 2 1 2

1 2 1 2

1 2 1

1

( , , , , ) ( , , , , )

( , , , , ) ( ) ( , , , , ) ( )

( ) ( )

( , , , , ) ( )

( )

U S V n n U S V n n

U S V n n S U S V n n V

S V

U S V n n n

n

   


         

   

    

 






   
 

   

 
 

 



This is true for any value of .  For  = 1,

1 2 1 2( , , , , ) ( , , , , )U S V n n U S V n n    

1

1

U U U
S V n U

S V n

  
    

  

i i

i

U TS PV nm   

This is called Euler’s relation for the internal energy.



Other Euler relations:

H U PV  
i i

i

H TS nm  

A U TS  
i i

i

A PV nm   

G A PV  
i i

i

G nm 



The Gibbs-Duhem Relation

Differentiating the Euler relation for dG,

j j j j

j j

dG dn n dm m  

Using the relation

j j

j

dG SdT VdP dnm    

we obtain the Gibbs-Duhem relation

0j j

j

SdT VdP n dm  



This result can also be obtained from the Euler relation for dU:

j j j j

j j

dU TdS SdT PdV VdP dn n dm m      

Using the relation

j j

j

dU TdS PdV dnm   

we find

0j j

j

SdT VdP n dm  

For a one-component system we recover the known result

SdT VdP nd dGm   



Phase Equlibrium in Multicomponent Systems

Two-component liquid at equilibrium with its vapor.

At constant P and T,

2 1 21 2 2

1 1 21 2 1

1 1

1 1, , , , , , , ,

2 2

2 2, , , , , , , ,

g g gl l l

g g gl l l

l g

l g

P T n n n P T n n n

l g

l g

P T n n n P T n n n

G G
dG dn dn

n n

G G
dn dn

n n

    
    

    

    
    

    

1 1 2 2Since   0, 0,   andl g l gdn dn dn dn   

1 2,g gn n

1 2,l ln n

2 1 2

1

1 , , , ,

, etc.
g gl

l

l

P T n n n

G

n
m

 
 

 

1 1 2 2,l g l gm m m m 



Assuming the vapor behaves as an ideal gas, the chemical potential of substance 

j in the solution is 

0

0
( ) ln

jl g

j j j

P
T RT

P
m m m  

For the pure substance j, 

*

* * 0

0
( ) ln

jl g

j j j

P
T RT

P
m m m  

0because ( ) doesn't depend on mole fractions.  It follows thatj Tm

*

*
ln

jl l

j j

j

P
RT

P
m m 



Ideal Solutions and Raoult’s Law

If the partial vapor pressure of each component in a solution obeys the relation 

*

j j jP x P

where      is the mole fraction of component  in the liquid phase,
j

j

i

i

n
x j

n




sol * lnj j jRT xm m 

the solution is called ideal.  Ideal solutions follow Raoult’s law, 

sol

*

Here   is the chemical potential of (liquid) component  in the solution

and  is the chemical potential of the pure substance.

j

j

jm

m



Vapor Pressure of Ideal Two-Component Solutions

* * * * * * *

1 2 1 1 2 2 1 1 1 2 1 1 2 2 1(1 ) ( )     (linear in )P P P x P x P x P x P x P P P x         

The mole fraction of 

component 1 in the liquid 

phase is 

*

2
1 * *

1 2

P P
x

P P






P
*

1P

*

2P

P

1P

2P

1x 10



1
1

* * * * *

1 1 2 1 1 2

* * * * * *

1 1 2 2 1 2 1 2

   (Dalton's law)

1

P
y

P

x P P P P P P

x P x P P P P P P P



 
    

    

Calculate the mole fraction  y1 of component 1 in the vapor phase at a given 

value P of the vapor pressure using Dalton’s law of partial pressures: 

1

1

1

 depends linearly on .

 depends nonlinearly 

     (hyperbolically) on  (and on )!

x P

y

P x

*

1P

*

2P

1 vs. P x

1 1 or  x y
10

1 vs. P y

liquid-vapor coexistence



1 1 1 1
1 1 1 1 1 1

1 2 1 2

Mole fractions in liquid and vapor phases:

, or ,
l l g g

E F l l E g g F

l l l g g g

n n n n
x y n n x n n y

n n n n n n
     

 

How much liquid vs. vapor is there at a pressure PC, given that the overall mole 

fraction of component 1 is 1 ?Bx

*

1P

*

2P

1 vs. P x

1 1 or  x y 10

1 vs. P y
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Non-Ideal Solutions

P
*

j j jP x P

*

1P

*

2P

P

1P

2P

1x 10

attractive interactions between 

different molecules dominate

*   as  1  onlyj j j jP x P x 

*

1P

*

2P

P

1P

2P

1x 10

repulsive interactions between 

different molecules dominate



Temperature-Composition Diagrams

P

*

1T

*

2T 1  vs.  bT x

10

1  vs.  bT y

Substance labeled 2 is assumed to have a lower boiling point.  The vapor is 

richer than the solution in the more volatile substance 2, thus y1 < x1..

Fractional distillation exploits this principle. 

liquid

vapor



Azeotropes

P

Fractional distillation cannot separate the two components. 

*

1T

*

2T

1  vs.  bT x

1x 10

1  vs.  bT y

liquid

vapor



Activity

For any solution (ideal or not), 

For ideal solutions 

*

*
ln

jl l

j j

j

P
RT

P
m m 

*

j

j

j

P
x

P


For nonideal solutions 
*

  "activity of component  in the solution"
j

j

j

P
a j

P


* lnl l

j j jRT am m 



Solid-Liquid Solutions

A B   for every substance that appears on both sides andj jm m

A:  water

B:  water + sugar

Solutions separated by membrane 

permeable to water only. 

A *

B * ln

w w

w w wRT a

m m

m m



 

A B

A B

A B

These cannot be equal with 1 unless .

The only way for this to happen is to have .

w w wa

P P

m m 





Osmotic Pressure

A *

B *
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For a dilute solution      1

ln ln(1 )

It follows that the osmotic pressure of dilute solutions is given by the relation

w w s

w s s w s

s
s w s

w

a x x

a x x V RTx

n
x V RTn

n

   

      

   

cRT 



Additional Definitions

1

P

V

V T


 
  
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Coefficient of Thermal Expansion

Isothermal Compressibility Factor

1
T

T

V

V P


 
   
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KINETIC THEORY OF GASES



Root-Mean-Square Velocity

1
22

rms

3 Bk T
u u

m
 

2 3
From the equipartition principle, 

2 2
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m
 

p

 , ,   velocity vector of a gas moleculex y zu u uu



Velocity Distribution

Recall that the probability of having translational energy

is given by the Boltzmann factor 

 2 2 21

2
x y zE m u u u  

 2 2 2 / 2
( )

x y z Bm u u u k T
P E e

  

The probability of having a velocity component ux in the x direction is Gaussian:

2 / 2
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2
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u u u p u

m




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The Maxwell-Boltzmann Distribution

Calculate the probability distribution  f (u) for a molecule to have a velocity 

modulus

by converting to spherical polar coordinates and integrating over angles: 

 
1
22 2 2

x y zu u u u  

3
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Most Probable Speed

The maximum of the Maxwell-Boltzmann distribution lies at 

which is satisfied for 

( ) 0  
d

f u
du



mp

2 Bk T
u

m




Velocity Distribution and Reaction Rates

The shape of the Maxwell-Boltzmann distribution has important implications 

for chemical reactions.  Even though the maximum of the curve depends 

weakly on temperature, the fraction of molecules with velocities higher than a 

critical value depends exponentially on the temperature.  Thus a relatively 

small increase of temperature can have a large effect on the rate of a chemical 

reaction. 



REACTION RATES



Chemical Reactions

Exponents: reaction order

A B C DA B C D       
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d
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1st Order Reactions

A B
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k
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Temperature Dependence of Rate Constants

/
In most cases under common conditions,    Arrhenius equation

:  activation energy

aE RT
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products

reaction coordinate
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Transition State Theory

Assumption:  All trajectories that reach the barrier top lead to products.
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Assuming the potential is harmonic about the minimum,
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Taking into account degrees of freedom orthogonal to the reaction coordinate,
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Corrections to Classical Transition State Theory

1. Recrossing of transition state region (negative corrections)

2. Quantum mechanical effects (primarily tunneling)

ln k

1/T

tunneling regime

activated crossing



Tunneling



tunneling
1( ) exp 2 [ ( ) ]P E m V x E dx

 
 
 
 
 

 

• Tunneling is important in the kinetics of light particles 

(primarily e-, H, H+, D,…)

• Tunneling effects are sensitive to isotopic substitution

Preliminaries
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classical
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• Symmetric double well in a 

dissipative medium: quenched 

tunneling oscillations

Time evolution in double wells

very small 
splittings

• Isolated symmetric 

double well: constant 

amplitude tunneling 

oscillations

• Asymmetry quenches 

tunneling
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Classical rate theory: 
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Tunneling dominates at 

low temperatures, where 

the classical rate goes to 

zero.
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1927 Hund suggested that quantum  mechanical tunneling may 

play an important role in some chemical reactions.

Early history

R. H. Fowler and L. Nordheim, Proc. Roy. Soc. A 119, 173 (1928)

r

V(r)
e-

1928 Fowler and Nordheim observed velocities of electrons 

emitted by metals that were too small.



1932 The discovery of deuterium provided ample evidence for 

quantum tunneling and motivated theoretical and 

experimental work on isotope effects.

1933 Kinetic information from ortho/para-H2 interconversion 

revealed considerable deviations from Arrhenius 

behavior indicative of tunneling

1934 Observation of tunneling splittings in NH3

1956 H+/D+ abstraction from 2-ethoxycarbonylcyclopentanone

p+ n p+



Chemical bonding, conjugated systems

and band structure

*
b

R
V(r)

conduction
valence

R



Quantum paths for the tunneling 

electron in ruthenium-modified 

myoglobin.  The heme and 

ruthenium redox centers are 

separated by 28 Angstroms.

Electron tunneling in biomolecules

KA. Kuki A. and P. G. Wolynes, Science 1987, 236, 1647-1652.



Exciton tunneling in 

molecular aggregates

Exciton tunneling in 

symmetric molecular 

aggregates leads to a type 

of band structure and 

delocalized states.



Nuclear tunneling in electron transfer

+  e-Fe3+Fe2+

R. A. Marcus, 

1992 Nobel Prize in Chemistry.



Tunneling of atoms

scattering

bimolecular reactions

symmetric 

isomerizations

asymmetric 

isomerizations

predissociation

unimolecular decay

enhancement 
of tunneling



Tunneling effects in 

bimolecular reactions

2 2

2

H+H H +H

D+H HD+H

(observed through interconversion   

of ortho- and para-forms)

Potential surface curvature 

(“corner cutting”)

RAB

R
B

C

A+BC AB+C



Tunneling effects in 

molecular spectroscopy

Inversion of NH3
Tunneling leads to splitting of 
rovibrational levels in symmetric 
isomerizations.  The splitting is 
observed spectroscopically in the 
microwave region.

C. E. Cleeton and N. H. Williams, 
Phys. Rev. 45, 234 (1934).

11.3cm





3,7-dichlorotropolone

H tunneling in 

hydrogen-bonded 

molecules



A. Kohen, R. Cannio, S. Bartolucci and J.P. Klinman (1999), Nature 399, 496-499.

Motion of the primary (1°) and 

secondary (2°) hydrogens in the 

reaction of alcohol dehydrogenase.

Tunneling in enzymes

Tunneling plays a significant role in hydrogen transfer 

at enzyme active sites. 



Tunneling in the condensed phase
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Rotational tunneling in crystals

At low temperatures (4-50K) 

the rotation of ammonium ions 

in ionic salts is dominated by 

tunneling.

H. L. Strauss, Acc. Chem. Res. 30, 37-42 (1997).



Competing effects in kinetics

conventi

onal

TST
TST for 1-

dim. 

adiabatic 

potential quant

um

Diffusion of H and D in crystalline Si

Inverse isotope effect!



Theoretical treatments of tunneling

• Full solution of the quantum mechanical wave equation

• Instanton theory (tunneling in imaginary time / inverted 

potential)

• Tunneling corrections to classical trajectory calculations from 

semiclassical expressions

• Quantum mechanical solution of simplified models (master 

equations, harmonic bath approximations,…)

• Path integral or quantum Monte Carlo calculations in select 

situations (e.g., tunneling splittings)



A tip is scanned over a surface at a distance of a few atomic 

diameters in a point-by-point and line-by-line fashion. At each 

point the tunneling current between the tip and the surface is 

measured. The tunneling current decreases exponentially with 

increasing distance and thus, through the use of a feedback loop, 

the vertical position of the tip can be adjusted to a constant 

distance from the surface.

Scanning Tunneling Microscopy

Gerd Binnig and Heinrich Rohrer, IBM 

Research Laboratory, Zurich, shared the 

Physics Nobel prize in 1986 for their 

discovery of STM.  



Cu surface (electron standing 

waves on surface steps)

Unreconstructed (110) Ni surface

Imaging surfaces



Cr impurities on a Fe (001) 

surface

Zig-zag chain of Cs atoms 

on the GaAs(110) surface.



Stadium quantum corral: 

Fe on Cu
Spelling “atom” in 

Japanese. Fe on Cu

Nanoengineering with STM



STABILITY CRITERIA AND PHASE TRANSITIONS



Concavity of the Entropy

Imagine a system whose entropy function 

of a system has the shape shown in the 

figure.  Consider two identical such 

systems, each with internal energy U0 and 

entropy 2S(U0).  Suppose we remove 

energy U from the first system and put 

it in the second system.  The new entropy 

will be 

S

U0U0 - U U0 + U U( ) ( ) 2 ( )S U U S U U S U     

Since this rearrangement of the energy results in a larger entropy, it should occur 

spontaneously if the two systems are connected through a diathermal wall.  This way 

the system will break up into two systems of different thermodynamic properties.  This 

process is a phase transition.  

The instability leading to phase separation is a consequence of the assumed convex 

shape of S over a range of U.  In stable thermodynamic systems the entropy function is 

a concave function, i.e., d 2 S < 0 with respect to the extensive variables U and V.  



The concavity condition for the entropy implies the convexity of the internal energy 

function with respect to its extensive variables S and V, as illustrated in the figure. 

Stability Conditions for Thermodynamic Potentials

V

V

Adapted from H. B. Callen, Thermodynamics and 

an Introduction to Thermostatistics, 2nd Edition. 



The other thermodynamic potentials are functions of extensive as well as intensive 

variables.  Because intensive variables are introduced through negative terms in the 

Legendre transform of the internal energy, the resulting thermodynamic potentials 

are concave functions of their intensive variables (but they are still convex functions 

of their extensive variables).  For example, 
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First Order Phase Transitions

Failure of stability criteria:

If the fundamental thermodynamic 

function of a system is unstable, 

fluctuations may take the system over the 

local maximum, and the system breaks up 

into more than one phases.  

G or U

S or V



Second Order Phase Transitions and Critical Phenomena

The two stable minima responsible for a first order phase transition coalesce at the 

critical point, giving rise to a second order phase transition.  

G or U

S or V

Critical phenomena are 

accompanied by huge density 

fluctuations, which give rise to 

the observed “critical 

opalescence”. 



SUPERFLUIDITY AND BOSE-EINSTEIN CONDENSATION



The History of Superfluid 4He

1908:  4He was first liquified (5.2 K).

Unusual properties were observed: strange flow, expansion upon cooling below 2.2 

K.  

1928:  Sharp maximum in the density with a discontinuity in slope at ~2.2 K.  Two phases.  

1932:  The specific heat diverges at 2.17 K; the curve has a  shape (“lambda transition”).  

Normal and superfluid phases identified. 

1930s-1940s:  

Remarkable transport properties of superfluid 4He studied extensively.

• Viscosity drops by many orders of magnitude; the system flows through capillaries.

• The superfluid forms extended thin films over large surfaces.

• The superfluid does not rotate upon rotating its container.

• It appears the superfluid flows without friction!



The Phenomenon of Superfluidity

A group of phenomena including:

• Frictionless flow

• Persistent current

• Heat transfer without a thermal gradient



Bose-Einstein Condensation (BEC)

Einstein predicted that if a gas of bosons were cooled to a sufficiently low temperature, all the 

atoms would gather in the lowest energy state. 

In 1995, Cornell and Wieman produced the first condensate of 2000 Rb atoms at 20 nK.

Ketterle produced a condensate of Na with more atoms and observed interference patterns.  

BEC is intimately connected with superfluidity, but is not a necessary condition for this group 

of phenomena.  

Recent Nobel prizes: 

2001:  Cornell, Wieman and Ketterle for BEC

2003:  Leggett for theory of superfluids

Condensate fraction:

(N0: number of particles in the zero momentum state)

In the strongly interacting 4He superfluid the condensate fraction is small (about 7% at T = 0)

0
0

N
n

N




The Quantum-Classical Isomorphism

A single quantum mechanical particle is isomorphic to a “necklace” of N classical “beads” 

that are connected with one another via harmonic springs and which experience a 

potential equal to 1/N of the actual potential felt by the quantum particle.

Quantum statistical effects of identical bosons or fermions manifest themselves in the 

exchange of beads, which causes the necklaces of different particles to cross-link.



A snapshot of 4He at 1.2 K.  Each 4He atoms is represented in the simulation through  

20 “pair-propagator” beads.  The blue beads correspond to linked necklaces.



The End


