Basic Concept of Organic Stereochemistry

Mr. CHAUDHAR UDDHAV N. Assistant Professor Department of Chemistry Kalikadevi Arts, Commerce & Science College, Shirur (Ka.), Dist- Beed

- Stereoisomers
- Chirality
- (R) and (S) Nomenclature
- Depicting Asymmetric Carbons
- Diastereomers
- Fischer Projections
- Stereochemical Relationships
- Optical Activity
- Resolution of Enantiomers

Stereochemistry:

The study of the three-dimensional structure of molecules

Structural (constitutional) isomers:

same molecular formula but different bonding sequence

Stereoisomers:

same molecular formula, same bonding sequence, different spatial orientation

Stereochemistry plays an important role in determining the properties and reactions of organic compounds:

Caraway seed

spearmint

The properties of many drugs depends on their stereochemistry:

(S)-ketamine anesthetic

(R)-ketamine hallucinogen

Enzymes are capable of distinguishing between stereoisomers:

(S)-(+)-epinephrine unnatural epinephrine does not fit the enzyme's active site

Types of Stereoisomers

Two types of stereoisomers:

enantiomers

two compounds that are nonsuperimposable mirror images of each other

diastereomers

Two stereoisomers that are not mirror images of each other

Geometric isomers (cis-trans isomers) are one type of diastereomer.

Chiral

Enantiomers are chiral:

Chiral:

Not superimposable on its mirror image

Many natural and man-made objects are chiral:
 hands

scissors

screws (left-handed vs. right-handed threads)

Right hand threads slope up to the right.

Chiral

Some molecules are chiral:

Asymmetric Carbons

- The most common feature that leads to chirality in organic compounds is the presence of an asymmetric (or chiral) carbon atom. A carbon atom that is bonded to four different groups
- In general: 🗖 no asymmetric C 🛛 🔶 1 asymmetric C → always chiral ■ > 2 asymmetric C → may or may not be

usually achiral chiral

Asymmetric Carbons

Example: Identify all asymmetric carbons present in the following compounds.

Many molecules and objects are achiral:
 identical to its mirror image
 not chiral

Internal Plane of Symmetry

Any molecule that has an internal mirror plane of symmetry is achiral even if it contains asymmetric carbon atoms.

Internal Plane of Symmetry

Cis-1,2-dichlorocyclopentane is a meso compound:

- an achiral compound that contains chiral centers
- often contains an internal mirror plane of symmetry

Internal Plane of Symmetry

Example: Which of the following compounds contain an internal mirror plane of symmetry?

Chiral vs. Achiral

To determine if a compound is chiral: 2 asymmetric carbons: --> Chiral or achiral Does the compound have an internal plane of symmetry? -Yes: --> achiral -No: -If mirror image is nonsuperimposable, then it's chiral. - If mirror image is superimposable, then it's achiral.

Conformationally Mobile Systems

- Alkanes and cycloalkanes are conformationally mobile.
 - rapidly converting from one conformation to another
- In order to determine whether a cycloalkane is chiral, draw its most symmetrical conformation (a flat ring).

Chiral vs. Achiral

Example: Identify the following molecules as chiral or achiral.

trans-1,3-dibromocyclohexane ethylcyclohexane

- Stereoisomers are different compounds and often have different properties.
- Each stereoisomer must have a unique name.
- The Cahn-Ingold-Prelog convention is used to identify the configuration of each asymmetric carbon atom present in a stereoisomer.
 (R) and (S) configuration

The two enantiomers of alanine are:

Natural alanine (S)-alanine Unnatural alanine (R)-alanine

 Assign a numerical priority to each group bonded to the asymmetric carbon:
 group 1 = highest priority
 group 4 = lowest priority

Rules for assigning priorities:

- Compare the first atom in each group (i.e. the atom directly bonded to the asymmetric carbon)
 - Atoms with higher atomic numbers have higher priority

Example priorities:

 $I > Br > CI > S > F > O > N > {}^{13}C > {}^{12}C > {}^{3}H > {}^{2}H > {}^{1}H$

In case of ties, use the next atoms along the chain as tiebreakers.

$CH(CH_3)_2 > CH_2CH_2Br > CH_3CH_2$

Treat double and triple bonds as if both atoms in the bond were duplicated or triplicated:

- Using a 3-D drawing or model, put the 4th priority group in back.
- Look at the molecule along the bond between the asymmetric carbon and the 4th priority group.

Draw an arrow from the 1st priority group to the 2nd group to the 3rd group.
 Clockwise arrow
 Counterclockwise arrow
 (R) configuration
 (S) configuration

Example: Identify the asymmetric carbon(s) in each of the following compounds and determine whether it has the (R) or (S) configuration.

Example: Name the following compounds.

- When naming compounds containing multiple chiral atoms, you must give the configuration around each chiral atom:
 - position number and configuration of each chiral atom in <u>numerical order</u>, separated by commas, all in () at the start of the compound name

(2S, 3S)-2-bromo-3-chlorobutane

Example: Draw a 3-dimensional formula for (R)-2-chloropentane.

Step 1: Identify the asymmetric carbon.

$$CI = CH_3 - CH_2 - CH_2 CH_2 CH_3$$

Step 2: Assign priorities to each group attached to the asymmetric carbon.

$$\begin{array}{c}
1 \\
CI \\
3 \\
CH_{3} - C \\
H \\
4
\end{array}$$

Step 3: Draw a "skeleton" with the asymmetric carbon in the center and the lowest priority group attached to the "dashed" wedge (i.e. pointing away from you).

Step 4: Place the highest priority group at the top.

Step 5: For (R) configuration, place the 2nd and 3rd priority groups around the asymmetric carbon in a clockwise direction.

Step 6: Double-check your structure to make sure that it has the right groups and the right configuration.

Example: The R-enantiomer of ibuprofen is not biologically active but is rapidly converted to the active (S) enantiomer by the body. Draw the structure of the R-enantiomer.

Example: Captopril, used to treat high blood pressure, has two asymmetric carbons, both with the S configuration. Draw its structure.

