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Numerical Integration of 
Partial Differential Equations (PDEs) 

Introduction to PDEs. 

Semi-analytic methods to solve PDEs. 

Introduction to Finite Differences. 

Stationary Problems, Elliptic PDEs. 

Time dependent Problems. 

Complex Problems in Solar System 
Research. 
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Introduction to PDEs. 

 
 Definition of Partial Differential 

Equations. 

 Second Order PDEs. 

-Elliptic 

-Parabolic 

-Hyperbolic 

 Linear, nonlinear and quasi-linear PDEs. 

What is a well posed problem? 

 Boundary value Problems (stationary). 

 Initial value problems (time dependent). 
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Differential Equations 

 A differential equation is an equation for an unknown function  of one 

or several variables that relates the values of the function itself and 

of its derivatives of various orders.  

 Ordinary Differential Equation: 

Function has 1 independent variable. 

 Partial Differential Equation: 

At least 2 independent variables. 

4 



Physical systems are often 

described by coupled 

Partial Differential Equations (PDEs) 

 Maxwell equations 

 Navier-Stokes and Euler equations 

in fluid dynamics. 

 MHD-equations in plasma physics 

 Einstein-equations for general relativity 

 ... 

 ... 
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PDEs definitions 

 General (implicit) form for one function u(x,y) : 

 

 

 Highest derivative defines order of PDE 

 Explicit PDE => We can resolve the equation 

to the highest derivative of u.  

 Linear PDE => PDE is linear in u(x,y) and  

for all derivatives of u(x,y) 

 Semi-linear PDEs are nonlinear PDEs, which 

are linear in the highest order derivative. 
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PDEs and Quadratic Equations 
 Quadratic equations in the form 

 

   describe cone sections. 
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a(x,y)c(x,y) − b(x,y)2 / 4 > 0  Ellipse 

a(x,y)c(x,y) − b(x,y)2 / 4 = 0  Parabola 

a(x,y)c(x,y) − b(x,y)2 / 4 < 0  Hyperbola 
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With coordinate transformations these equations   

can be written in the standard forms: 

 

Ellipse:     

 

Parabola:     

 

Hyperbola:    

 

Coordinate transformations can be also applied to 

get rid of the mixed derivatives  in PDEs. 

(For space dependent coefficients this is only 

possible locally, not globally) 



Second Order PDEs with more then 

2 independent variables 
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 Elliptic: All eigenvalues have the same sign. [Laplace-Eq.] 

 Parabolic: One eigenvalue is zero. [Diffusion-Eq.] 

 Hyperbolic: One eigenvalue has opposite sign. [Wave-Eq.] 

 Ultrahyperbolic: More than one positive and negative 
eigenvalue.  

 
Mixed types are possible for non-constant coefficients, 
appear frequently in science and are often difficult to solve. 

 

Classification by eigenvalues of the coefficient matrix: 



Elliptic Equations 

 Occurs mainly for stationary problems. 

 Solved as boundary value problem. 

 Solution is smooth if boundary conditions allow. 
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Example: Poisson and Laplace-Equation (f=0) 



Parabolic Equations 
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 The vanishing eigenvalue often related to time derivative. 

 Describes non-stationary processes. 

 Solved as Initial- and Boundary-value problem. 

 Discontinuities / sharp gradients smooth out  

during temporal evolution. 

Example: Diffusion-Equation, Heat-conduction 



Hyperbolic Equations 

 The opposite sign eigenvalue is often related to the time derivative. 

 Initial- and Boundary value problem. 

 Discontinuities / sharp gradients in initial 

state remain during temporal evolution.  

 A typical example is the Wave equation. 

 

 

 

 

 With nonlinear terms involved sharp gradients can form during the 
evolution => Shocks 
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Ill-conditioned problems 

 Even well posed problems can be ill-conditioned.  

 => Small changes (errors,noise) in data lead 
to large errors in the solution. 

 Can occur if continuous problems are solved 
approximately on a numerical grid. 
PDE => algebraic equation in form  Ax = b 

 Condition number  of matrix  A: 

                             

     

                       
 
                       are maximal and minimal eigenvalues of A. 

 Well conditioned problems have a  
low condition number. 
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How to solve PDEs? 

 PDEs are solved together with appropriate 

Boundary Conditions and/or Initial Conditions. 

  Boundary value problem 

-Dirichlet B.C.: Specify u(x,y,...) on boundaries 

(say at x=0, x=Lx, y=0, y=Ly in a rectangular box) 

-von Neumann B.C.: Specify normal gradient of 

 u(x,y,...) on boundaries. 

   In principle boundary can be arbitrary shaped. 

    (but difficult to implement in computer codes) 
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http://en.wikipedia.org/wiki/Image:Bounday_value_problem.PNG


Initial value problem 
 Boundary values are usually specified on 

all boundaries of the computational domain. 

 Initial conditions are specified in the entire 
computational (spatial) domain, but only 
for the initial time t=0. 

 Initial conditions as a Cauchy problem: 
 
-Specify initial distribution u(x,y,...,t=0) 
 [for parabolic problems like the Heat equation] 
 
- Specify u and du/dt for t=0 
 [for hyperbolic problems like wave equation.]  
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Initial value problem 

16 



Numerical Integration of 
Partial Differential Equations (PDEs) 

Introduction to PDEs. 

Semi-analytic methods to solve PDEs. 

Introduction to Finite Differences. 

Stationary Problems, Elliptic PDEs. 

Time dependent Problems. 

Complex Problems in Solar System 
Research. 
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Semi-analytic methods to solve PDEs. 

 

 From systems of coupled first order PDEs 

(which are difficult to solve) to uncoupled 

PDEs of second order. 

 Example: From Maxwell equations 

to wave equation. 

 (Semi) analytic methods to solve the 

wave equation by separation of variables. 

 Exercise: Solve Diffusion equation 

by separation of variables. 
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How to obtain uncoupled 2. order 

PDEs from physical laws? 

 Example: From Maxwell equations to   

wave equations.  

 Maxwell equations are a  coupled system of first order vector PDEs. 

 Can we reformulate this equations 

to a more simple form? 

 Here we use the electromagnetic potentials, 

vectorpotential and scalar potential. 
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