Sound

The Nature of Sound
Ears and Speakers
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What /S Sound?

* Sound is really tiny fluctuations of air pressure
— units of pressure: N/m? or psi (Ibs/square-inch)

» Carried through air at 345 m/s (770 m.p.h) as
compressions and rarefactions in air pressure
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Properties of Waves
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sequence at a par-

* Wavelength (1) is measured from crest-to-crest ticular point in space
— or trough-to-trough, or upswing to upswing, etc.

* For traveling waves (sound, light, water), there is a speed (c)

* Frequency (f) refers to how many cycles pass by per second
— measured in Hertz, or Hz: cycles per second
— associated with this is period: T = 1/f

* These three are closely related:
AM=c

v
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Longitudinal vs. Transverse Waves

* Sound is a longitudinal wave, meaning that the
motion of particles is along the direction of
propagation

* Transverse waves—water waves, light—have things
moving perpendicular to the direction of propagation

@ %mmmmmm

e Wavelength —-"

(b)

Spring 2006 4



UCSD: Physics 8; 2006

Why is Sound Longitudinal?

 Waves in air can't really be transverse, because the
atoms/molecules are not bound to each other
— can’t pull a (momentarily) neighboring molecule sideways

— only if a “rubber band” connected the molecules would this
work

— fancy way of saying this: gases can’t support shear loads
* Air molecules can really only bump into one another

* |Imagine people in a crowded train station with hands
in pockets

— pushing into crowd would send a wave of compression into
the crowd (longitudinal)

— jerking people back and forth (sideways, over several
meters) would not propagate into the crowd

— but if everyone held hands (bonds), this transverse motion
would propagate into crowd
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Sound Wave Interference and Beats

* When two sound waves are present, the
superposition leads to interference
— by this, we mean constructive and destructive addition

* Two similar frequencies produce beats
— spend a little while in phase, and a little while out of phase
— result is “beating” of sound amplitude

in phase: add

out of phase: cancel
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Speed of Sound

* Sound speed in air is related to the frantic motions of
molecules as they jostle and collide

— since air has a lot of empty space, the communication that a
wave is coming through has to be carried by the motion of
particles

— for air, this motion is about 500 m/s, but only about 350 m/s
directed in any particular direction
» Solids have faster sound speeds because atoms are
hooked up by “springs” (bonds)
— don’t have to rely on atoms to traverse gap

— spring compression can (and does) travel faster than actual
atom motion
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Example Sound Speeds

Medium sound speed (m/s)
air (20°C) 343

water 1497

gold 3240

brick 3650

wood 3800—4600
glass 5100

steel 5790
aluminum 6420
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Sound Intensity

* Sound requires energy (pushing atoms/molecules
through a distance), and therefore a power

* Sound is characterized in decibels (dB), according to:
— sound level = 10xlog(//l,) = 20xlog(P/P,) dB
— 1y, = 10712 W/m? is the threshold power intensity (0 dB)

— P, =2x10° N/m? is the threshold pressure (0 dB)
« atmospheric pressure is about 105 N/m?

 Examples:
— 60 dB (conversation) means log(//l;) = 6, so
« and log(P/P,) = 3, so = 0.0000002 atmosphere!!
— 120 dB (pain threshold) means log (//l;) = 12, so
« and log(P/P,) = 6, so = 0.0002 atmosphere
— 10 dB (barely detectable) means log(//l;) = 1, so
« and log(P/P,) = 0.5, so
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Sound hitting your eardrum

* Pressure variations displace membrane (eardrum,
microphone) which can be used to measure sound

— my speaking voice is moving your eardrum by a mere
1.5x104 mm = 150 nm = 1/4 wavelength of visible light!

— threshold of hearing detects 5x10-8 mm motion, one-half the
diameter of a single atom!!!

— pain threshold corresponds to 0.05 mm displacement

» Earignores changes slower than 20 Hz

— so though pressure changes even as you climb stairs, it is
too slow to perceive as sound

» Eardrum can’t be wiggled faster than about 20 kHz

— just like trying to wiggle resonant system too fast produces
no significant motion

Spring 2006 10



UCSD: Physics 8; 2006

Sensitivity of the Human Ear

* We can hear sounds with frequencies ranging from
20 Hz to 20,000 Hz

— an impressive range of three decades (logarithmically)

— about 10 octaves (factors of two)

— compare this to vision, with less than one octave!

equal loudness curves
{based on Fletcher and Munson)
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Localization of Sound
* Atlow frequencies (< 1000 Hz), detect phase
difference
— wave crest hits one ear before the other
— “shadowing” not very effective because of diffraction

* At high frequencies (> 4000 Hz), use relative intensity
in both ears
— one ear is in sound shadow
— even with one ear, can tell front vs. back at high freq.
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Speakers: Inverse Eardrums

» Speakers vibrate and push on the air
— pushing out creates compression
— pulling back creates rarefaction

* Speaker must execute complex motion according to
desired waveform

» Speaker is driven via “solenoid” idea:

— electrical signal (AC) is sent into coil that surrounds a
permanent magnet attached to speaker cone

— depending on direction of current, the induced magnetic field
either lines up with magnet or is opposite

— results in pushing or pulling (attracting/repelling) magnet in
coil, and thus pushing/pulling on center of cone
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Speaker Geometry

Speaker Driver
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Push Me, Pull Me

] Cone

Cone
Movement

Movement

Pull

Magnet

Push

() 2000 Shavano Music
(c) 2000 Shavano Music

Magnet

* When the center of the speaker cone is kicked, the whole cone
can't respond instantaneously
— the fastest any mechanical signal can travel through a material is at
the speed of sound in the material
* The whole cone must move into place well before the wave

period is complete
— otherwise, different parts of the cone might be moving in while
others are moving out (thus canceling the sound)

— if we require the signal to travel from the center to the edge of the
cone in 1/N of a wave cycle (N is some large-ish number):

+ available time is At = 1/Nf = AINc,;,
* ripple in cone travels c.,,.At, so radius of cone must be < Ac.,,./Nc,;

— basic point is that speaker size is related to wavelength of sound
» low frequency speakers are big, high frequency small
Spring 2006 15
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The Look of Sound

Sound Waveforms
Frequency Content
Digital Sampling
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All Shapes of Waveforms

* Different Instruments have

(2) /\/\/\/\/ (b) W different waveforms

— a: glockenspiel
— b: soft piano

y — ¢: loud piano
C d
! ’P\/\M ’Jm‘/\/ — d: trumpet
* Qur ears are sensitive to the
detailed shape of waveforms!

* More waveforms:
[E?W\/ f”(f‘UJW\ — e: french horn
— f: clarinet
— @g: violin

http://www.st-and.demon.co.uk/AudioMisc/asymmetry/asym.html
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How does our ear know?

DC

* Our ears pick out frequency
‘ components of a waveform

0 oo iz * A DC (constant) signal has
st Harmonic nO Wiggles, thUS iS at ZerO

h I frequency
e t f * A sinusoidal wave has a

° \/ ° (g single frequency associated
Znd Harmonic With it

* The faster the wiggles, the
higher the frequency

wet e The height of the spike
indicates how strong

h ﬂ (\ ﬂ m ‘ L (amplitude) that frequency

llllll component is
VUV
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Composite Waveforms

Fourier Expansion

Power Spectrum
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A single sine wave has only one
frequency represented in the
“power spectrum”

Adding a “second harmonic” at
twice the frequency makes a
more complex waveform

Throwing in the fourth harmonic,
the waveform is even more
sophisticated

A square wave is composed of
odd multiples of the fundamental
frequency
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Decomposing a Square Wave

Fourier series expansion of a square wave 1B AN TN
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decreasing amplitude L- ....J
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The ear assesses frequency content

=i

» Different waveforms look different in frequency space
* The sounds with more high-frequency content will sound raspier

* The exact mixture of frequency content is how we distinguish
voices from one another
— effectively, everyone has their own waveform
— and corresponding spectrum

— though an “A” may sound vastly similar, we’re sensitive to very
subtle variations
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Assignments

* Read pp. 404—406, 489492
* Midterm 05/04 (Thu.) 2PM WLH 2005

— have posted study guide on course website

— will have review session Wednesday 7:00-8:50, Center 113
— Use light-green Scantron: Form No.: X-101864

— Bring #2 pencil, calculators okay
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