

The Nature of Sound Ears and Speakers

What IS Sound?

- Sound is really tiny fluctuations of air pressure
 units of pressure: N/m² or psi (lbs/square-inch)
- Carried through air at 345 m/s (770 m.p.h) as compressions and rarefactions in air pressure

Properties of Waves

- or trough-to-trough, or upswing to upswing, etc.
- For traveling waves (sound, light, water), there is a speed (c)
- Frequency (f) refers to how many cycles pass by per second
 - measured in Hertz, or Hz: cycles per second
 - associated with this is period: T = 1/f
- These three are closely related:

λ**f** = **c**

Longitudinal vs. Transverse Waves

- Sound is a longitudinal wave, meaning that the motion of particles is along the direction of propagation
- Transverse waves—water waves, light—have things moving perpendicular to the direction of propagation

Why is Sound Longitudinal?

- Waves in air can't really be transverse, because the atoms/molecules are not bound to each other
 - can't pull a (momentarily) neighboring molecule sideways
 - only if a "rubber band" connected the molecules would this work
 - fancy way of saying this: gases can't support shear loads
- Air molecules can really only bump into one another
- Imagine people in a crowded train station with hands in pockets
 - pushing into crowd would send a wave of compression into the crowd in the direction of push (longitudinal)
 - jerking people back and forth (sideways, over several meters) would not propagate into the crowd
 - but if everyone held hands (bonds), this transverse motion would propagate into crowd

Sound Wave Interference and Beats

• When two sound waves are present, the superposition leads to interference

- by this, we mean constructive and destructive addition

- Two similar frequencies produce beats
 - spend a little while in phase, and a little while out of phase
 - result is "beating" of sound amplitude

Speed of Sound

- Sound speed in air is related to the frantic motions of molecules as they jostle and collide
 - since air has a lot of empty space, the communication that a wave is coming through has to be carried by the motion of particles
 - for air, this motion is about 500 m/s, but only about 350 m/s directed in any particular direction
- Solids have faster sound speeds because atoms are hooked up by "springs" (bonds)
 - don't have to rely on atoms to traverse gap
 - spring compression can (and does) travel faster than actual atom motion

Example Sound Speeds

Medium	sound speed (m/s)
air (20°C)	343
water	1497
gold	3240
brick	3650
wood	3800–4600
glass	5100
steel	5790
aluminum	6420

Sound Intensity

- Sound requires energy (pushing atoms/molecules through a distance), and therefore a power
- Sound is characterized in decibels (dB), according to:
 - sound level = $10 \times \log(I/I_0) = 20 \times \log(P/P_0)$ dB
 - $I_0 = 10^{-12} \text{ W/m}^2$ is the threshold power intensity (0 dB)
 - $P_0 = 2 \times 10^{-5} \text{ N/m}^2$ is the threshold pressure (0 dB)
 - atmospheric pressure is about 10⁵ N/m²
- Examples:
 - 60 dB (conversation) means $log(I/I_0) = 6$, so $I = 10^{-6} \text{ W/m}^2$
 - and $log(P/P_0) = 3$, so $P = 2 \times 10^{-2} \text{ N/m}^2 = 0.0000002$ atmosphere!!
 - 120 dB (pain threshold) means log (I/I_0) = 12, so $I = 1 \text{ W/m}^2$
 - and $\log(P/P_0) = 6$, so $P = 20 \text{ N/m}^2 = 0.0002$ atmosphere
 - 10 dB (barely detectable) means $log(I/I_0) = 1$, so $I = 10^{-11} \text{ W/m}^2$
 - and $\log(P/P_0) = 0.5$, so $P \approx 6 \times 10^{-5} \text{ N/m}^2$

Sound hitting your eardrum

- Pressure variations displace membrane (eardrum, microphone) which can be used to measure sound
 - my speaking voice is moving your eardrum by a mere 1.5×10^{-4} mm = 150 nm = 1/4 wavelength of visible light!
 - threshold of hearing detects 5×10⁻⁸ mm motion, one-half the diameter of a single atom!!!
 - pain threshold corresponds to 0.05 mm displacement
- Ear ignores changes slower than 20 Hz
 - so though pressure changes even as you climb stairs, it is too slow to perceive as sound
- Eardrum can't be wiggled faster than about 20 kHz
 - just like trying to wiggle resonant system too fast produces no significant motion

Sensitivity of the Human Ear

- We can hear sounds with frequencies ranging from 20 Hz to 20,000 Hz
 - an impressive range of three decades (logarithmically)
 - about 10 octaves (factors of two)
 - compare this to vision, with less than one octave!

Spring 2006

Localization of Sound

- At low frequencies (< 1000 Hz), detect phase difference
 - wave crest hits one ear before the other
 - "shadowing" not very effective because of diffraction
- At high frequencies (> 4000 Hz), use relative intensity in both ears
 - one ear is in sound shadow
 - even with one ear, can tell front vs. back at high freq.

Spring 2006

Speakers: Inverse Eardrums

- Speakers vibrate and push on the air
 - pushing out creates compression
 - pulling back creates rarefaction
- Speaker must execute complex motion according to desired waveform
- Speaker is driven via "solenoid" idea:
 - electrical signal (AC) is sent into coil that surrounds a permanent magnet attached to speaker cone
 - depending on direction of current, the induced magnetic field either lines up with magnet or is opposite
 - results in pushing or pulling (attracting/repelling) magnet in coil, and thus pushing/pulling on center of cone

UCSD: Physics 8; 2006

Speaker Geometry

Push Me, Pull Me

- When the center of the speaker cone is kicked, the whole cone can't respond instantaneously
 - the fastest any mechanical signal can travel through a material is at the speed of sound in the material
- The whole cone must move into place well before the wave period is complete
 - otherwise, different parts of the cone might be moving in while others are moving out (thus canceling the sound)
 - if we require the signal to travel from the center to the edge of the cone in 1/N of a wave cycle (*N* is some large-ish number):
 - available time is $\Delta t = 1/Nf = \lambda/Nc_{air}$
 - ripple in cone travels $c_{\text{cone}} \Delta t$, so radius of cone must be < $\lambda c_{\text{cone}} / Nc_{\text{air}}$
 - basic point is that speaker size is related to wavelength of sound
 - low frequency speakers are big, high frequency small

Spring 2006

The Look of Sound Sound Waveforms Frequency Content Digital Sampling

All Shapes of Waveforms

 $^{(g)}$ $M_{M}M_{M}$

- a: glockenspiel
- b: soft piano
- c: loud piano
- d: trumpet
- Our ears are sensitive to the detailed shape of waveforms!
- More waveforms:
 - e: french horn
 - f: clarinet
 - g: violin

http://www.st-and.demon.co.uk/AudioMisc/asymmetry/asym.html Spring 2006

How does our ear know?

- Our ears pick out frequency components of a waveform
- A DC (constant) signal has no wiggles, thus is at zero frequency
- A sinusoidal wave has a single frequency associated with it
- The faster the wiggles, the higher the frequency
- The height of the spike indicates how strong (amplitude) that frequency component is

Composite Waveforms

- A single sine wave has only one frequency represented in the "power spectrum"
- Adding a "second harmonic" at twice the frequency makes a more complex waveform
- Throwing in the fourth harmonic, the waveform is even more sophisticated
 - A square wave is composed of odd multiples of the fundamental frequency

Decomposing a Square Wave

- Adding the sequence:
 sin(x) + 1/3sin(3x) + 1/5sin(5x) + 1/7sin(7x) + ...
 - leads to a square wave
 - Fourier components are at odd frequency multiples with decreasing amplitude

The ear assesses frequency content

- Different waveforms look different in frequency space
- The sounds with more high-frequency content will sound raspier
- The exact mixture of frequency content is how we distinguish voices from one another
 - effectively, everyone has their own waveform
 - and corresponding spectrum
 - though an "A" may sound vastly similar, we're sensitive to very subtle variations

Spring 2006

Assignments

- Read pp. 404–406, 489–492
- Midterm 05/04 (Thu.) 2PM WLH 2005
 - have posted study guide on course website
 - will have review session Wednesday 7:00-8:50, Center 113
 - Use light-green Scantron: Form No.: X-101864
 - Bring #2 pencil, calculators okay